Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A look back suggests a sobering future of wildfire dangers in US west

University of Oregon-led research team urge a retooling of thought on fire-management practices

The American West has seen a recent increase in large wildfires due to droughts, the build-up of combustible fuel, or biomass, in forests, a spread of fire-prone species and increased tree mortality from insects and heat.

In a paper appearing online Feb. 14 in the Proceedings of the National Academy of Sciences, a 12-member research team warns that these conditions may be "a perfect storm" for more fires.

While grazing and fire suppression have kept incidents of wildfires unusually low for most of the last century, the amounts of combustible biomass, temperatures and drought are all rising. "Consequently, a fire deficit now exists and has been growing throughout the 20th century, pushing fire regimes into disequilibrium with climate," the team concludes.

"The last two centuries have seen dramatic changes in wildfire across the American West, with a peak in wildfires in the 1800s giving way to much less burning over the past 100 years," said lead author Jennifer R. Marlon, now a National Science Foundation Earth Science Postdoctoral Fellow at the University of Wisconsin, Madison. "The decline was mostly caused by the influx of explorers and settlers and by their subsequent suppression of wildfires, both intentionally and accidentally."

Marlon earned her doctorate at the University of Oregon, where she studied with co-authors Patrick J. Bartlein and Daniel G. Gavin, professors of geography, as well as with former UO professor Cathy Whitlock, professor of earth sciences at Montana State University. Five other co-authors also hold doctoral degrees from the UO but are now affiliated with other institutions.

Wildfires have been debated for years as either a destructive force of nature that should be eradicated or natural disturbance that keep ecosystems healthy. For nearly 100 years, national policy, as administered by the U.S. Forest Service, had been to respond rapidly to suppress all wildfires, but in recent years, local forest managers have been given more latitude to evaluate which fires to suppress, while ensuring public safety.

In their analysis, Marlon and colleagues used existing records on charcoal deposits in lakebed sediments to establish a baseline of fire activity for the past 3,000 years. They compared that with independent fire-history data drawn from historical records and fire scars on the landscape.

Their key findings:
Comparing charcoal records and climate data, as expected, showed warm, dry intervals, such as the "Medieval Climate Anomaly" between 1,000 and 700 years ago, which had more burning, and cool, moist intervals, such as the "Little Ice Age" between 500 and 300 years ago, had fewer fires. Short-term peaks in fires were associated with abrupt climate changes -- warming or cooling.

Wildfires during most of the 20th century were almost as infrequent as they were during the Little Ice Age, about 400 years ago. However, only a century ago, fires were as frequent as they were about 800 years ago, during the warm and dry Medieval Climate Anomaly. "In other words, humans caused fires to shift from their 1,000-year maximum to their 1,000-year minimum in less than 100 years," Gavin said.

Climate and humans acted synergistically -- by the end of the 18th century and early 19th century -- to increase fire events that were often sparked by agricultural practices, clearing of forests, logging activity and railroading.

"We can use the relationship between climate and fire," Marlon said, "to answer the question: What would the natural level of fire be like today if we didn't work so hard to suppress or eliminate fires? The answer is that because of climate change and the buildup of fuels across the western U.S., levels of burning would be higher than at any time over the past 3,000 years, including the peak in burning during the Medieval Climate Anomaly."

The long-term perspectives gained through these studies demonstrate how strongly climate and people affect the present-day landscapes and forests of the American West, and how they may change in the future, Bartlein said.

"Policymakers and others need to re-evaluate how we think of the past century to allow us to adjust and prepare for the future," he said. "Recent catastrophic wildfires in the West are indicators of a fire deficit between actual levels of burning and that which we should expect given current and coming climate conditions. Policies of fire suppression that do not account for this unusual environmental situation are unsustainable."

The five other co-authors previously at the UO are: Colin J. Long, now at the University of Wisconsin, Oshkosh; Christy E. Briles, now at Monash University in Australia; Daniele Colombaroli, now at the University of Bern in Switzerland; Mitchell J. Power, now at the University of Utah; and Megan K. Walsh, now at Central Washington University in Ellensburg, Wash. The remaining four co-authors are R. Scott Anderson of Northern Arizona University, Kendrick J. Brown of the Canadian Forest Service, Douglas J. Hallett of the University of Calgary and Elizabeth A. Scharf of the University of North Dakota.

"This collaboration of researchers with UO roots provides potentially important information that may be useful in guiding policies to protect the environment," said Kimberly Andrews Espy, vice president for research and innovation. "It is gratifying to see that the impact of graduate study at the UO extends well beyond students' time on our campus. Working together is a hallmark of UO graduate study and reflects well on our nationally ranked geography department."

Charcoal records used in the research were obtained from the Global Charcoal Database of the Global Palaeofire Working Group. Marlon, Bartlein and Power serve on the organization's scientific steering group.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.


Jennifer R. Marlon, postdoctoral researcher, geography, University of Wisconsin, Madison, 203-623-7108,

Patrick J. Bartlein, professor of geography, UO, 541-346-4967,

Daniel G. Gavin, associate professor of geography, UO, 541-346-5787,


Marlon faculty page (Wisconsin):

Bartlein faculty page:

Gavin faculty page:

UO Science on Facebook:

Jim Barlow | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>