Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

800-Year-Old Farmers Could Teach Us How to Protect the Amazon

10.04.2012
Raised Farming Beds Indicate Sustainable Use of Globally-Important Ecosystems

In the face of mass deforestation of the Amazon, recent findings indicate that we could learn from its earliest inhabitants who managed their farmland sustainably.

An international team of archaeologists and paleoecologists, including Dr. Mitchell Power, curator of the Garrett Herbarium at the Natural History Museum of Utah and assistant professor in the Department of Geography at the University of Utah, report for the first time that indigenous people, living in the savannas around the Amazonian forest, farmed without using fire. These findings are published today, April 9, 2012, in the journal Proceedings of the National Academy of Sciences.

The research could provide insights into the sustainable use and conservation of these globally-important ecosystems, which are being rapidly destroyed. Pressure on the Amazonian savannas today is intense, with the land being rapidly transformed for industrial agriculture and cattle ranching.

By analyzing records of pollen, charcoal and other plant remains like phytoliths spanning more than 2,000 years, the team has created the first detailed picture of land use in the Amazonian savannas in French Guiana. This gives a unique perspective on the land before and after the first Europeans arrived in 1492.

The research shows that the early inhabitants of these Amazonian savannas practiced ‘raised-field’ farming, which involved constructing small agricultural mounds with wooden tools. These raised fields provided better drainage, soil aeration and moisture retention: ideal for an environment that experiences both drought and flooding. The fields also benefited from increased fertility from the muck continually scraped from the flooded basin and deposited on the mounds. The raised-field farmers limited fires, and this helped them conserve soil nutrients and organic matter and preserve soil structure.

“We used radiocarbon dating to establish the age of the raised beds,” said Dr. Mitchell Power. We came to the conclusion that corn pollen we found dated to 800 years ago by dating charcoal deposits from above and below the sediment where the pollen was found.”

It has long been assumed that indigenous people used fire as a way of clearing the savannas and managing their land. However, this new research shows that this was not the case here. Instead, it reveals a sharp increase in fires with the arrival of the first Europeans, an event known as the ‘Columbian Encounter’. The study shows that this labor-intensive approach to farming in the Amazonian savannas was lost when as much as 95 percent of the indigenous population was wiped out as a result of Old World diseases, brought by European settlers.

The results of this study are in sharp contrast with what is known about the Columbian Encounter’s impact on tropical forest, where the collapse of indigenous populations after 1492 led to decreased forest clearance for agriculture, which in turn, caused a decline in burning. This study shows that high fire incidence in these Amazonian savannas is a post-1492, rather than pre-1492, phenomenon.

“Our results force reconsideration of the long-held view that fires were a pervasive feature of Amazonian savannas, said Power”

Dr José Iriarte of the University of Exeter, lead author on the paper, said: “This ancient, time-tested, fire-free land use could pave the way for the modern implementation of raised-field agriculture in rural areas of Amazonia. Intensive raised-field agriculture can become an alternative to burning down tropical forest for slash and burn agriculture by reclaiming otherwise abandoned and new savannah ecosystems created by deforestation. It has the capability of helping curb carbon emissions and at the same time provide food security for the more vulnerable and poorest rural populations.”

Professor Doyle McKey of the University of Montpellier said: “Amazonian savannas are among the most important ecosystems on Earth, supporting a rich variety of plants and animals. They are also essential to managing climate. Whereas savannas today are often associated with frequent fire and high carbon emissions, our results show that this was not always so. With global warming, it is more important than ever before that we find a sustainable way to manage savannas. The clues to how to achieve this could be in the 2,000 years of history that we have unlocked.”

Dr Francis Mayle of the University of Edinburgh said: “We’ve got an unprecedented record of these Amazonian savannas that completely overturns previous assumptions about the way in which ancient cultures utilized these globally-important ecosystems.”

Dr Stephen Rostain of CNRS said “These raised-field systems can be as productive as the man-made black soils of the Amazon, but with the added benefit of low carbon emissions.”

The study was carried out by a team from the University of Exeter (UK), Natural History Museum of Utah (US), Centre National de la Recherche Scientifique (France), University of Edinburgh (UK), Université Montpellier II and Centre d’Ecologie Fonctionnelle et Evolutive (France). It was funded by two CNRS Programmes (‘Amazonie’ and ‘Ingénierie Ecologique’), the Arts and Humanities Research Council and The Leverhulme Trust.

The research featured in the PNAS article highlights two areas of active research at the Natural History Museum.

During the past four years at the Natural History Museum of Utah, Dr. Power has been developing a modern pollen reference collection based on vouchered specimens archived in the herbarium collection. The majority of the plant specimens in the herbarium collection were collected during their period of flowering, thus the Museum plant collection provides opportunities to study the plant ecology such as the timing of flowering as well as the pollen morphology for each species. Pollen is preserved in lakes and bogs for thousands of years and the ability to identify plants through there pollen, has allowed Power and this international team of scientists to document the types of crops and natural vegetation present thousands of years ago when raised-field farmers occupied the savannas of coastal French Guiana.

Secondly, the research in French Guiana contributes to an ongoing effort by Power and other international colleagues of building a global fire history database. This global database allows comparisons across continents, latitudes, longitudes and any area where the history of fire activity has been recorded. To date, nearly 1000 locations have been studied for their fire history. In the case of the French Guiana research, we found a pattern of increasing fire after 1500 AD, which is contrary to the robust patterns we have observed from over 300 charcoal records from the Americas that show decreasing fire at the same time.

Patti Carpenter | EurekAlert!
Further information:
http://www.utah.edu
http://newsdesk.nhmu.utah.edu/?q=newsdesk/releases/800-year-old-farmers-could-teach-us-how-protect-amazon

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>