Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

34 Million-Yr GHG Model: Earth Is CO2 Sensitive

20.10.2008
In a new model of atmospheric carbon dioxide levels, sea level variation, Northern Hemisphere ice sheets and Antarctic ice over the past 34 million years reported in Nature, University of Massachusetts Amherst climatologist Robert DeConto and colleagues at four other institutions cast new light on estimates of polar ice volume and the relationship to sea level. Their model has implications for understanding future effects of global warming.

Climatologist Robert DeConto of the University of Massachusetts Amherst and colleagues at four institutions are reporting in the Oct. 2 issue of the journal Nature that their latest climate model of the Northern Hemisphere suggests conditions would have allowed ice sheets to form there for the last 25 million years, or about 22 million years earlier than generally assumed.Their research has implications for the evaluation of global climate change.

When climate and ice sheet models of the past closely match other information, in this case sea-level data, climate scientists gain more precise tools for predicting future trends. “There’s a lot of mysterious sea-level variability over the last 25 million years that is difficult to explain with Antarctic ice alone,” DeConto says. “But if ice sheets and glaciers were present earlier in the Northern Hemisphere, as we think they might have been, they might provide the answer.”

With future CO2 levels expected by the year 2100 to approach levels not seen in the last 25 million years, understanding past conditions is crucial for predicting possible implications for Earth’s ice sheets and sea levels. “It’s important that we get this right,” DeConto says. “If we are correct, we are rewriting the history of the cryosphere over the past 34 million years and calling a lot of things into question. It’s a challenge to geologists.” The cryosphere is the planet’s total amount of snow, ice and frozen ground.

The new model, accounting for atmospheric CO2 and changes in Earth’s orbit around the sun among other variables, shows that the threshold of atmospheric CO2 at which large ice sheet development in the Northern Hemisphere is possible, is much lower than for Antarctica. The work, supported by the National Science Foundation, also suggests that climate, ice sheets and sea level may be far more sensitive to CO2 levels than generally accepted.

“The last time CO2 levels were as high as they are expected to reach in coming centuries, there was no big ice sheet on Antarctica because the planet was too warm,” DeConto says. “This is not to say that we’ll see the great East Antarctic Ice Sheet melt, because its large size and high elevations are self-sustaining. But it is alarming. We are trying to understand exactly what the effect of those high CO2 levels will be. It appears there will be an associated rise in sea level because much of the rest of the world’s ice cover could be affected.”

In addition to DeConto, the team includes climate researchers from Penn State University and Yale University in the United States and the University of Southampton and Cardiff University in Great Britain. Their paper published today is accompanied by an invited commentary by geologist Stephen Pekar of Queens College, New York, an expert on ancient sea level variation over the same period. He notes that DeConto and colleagues’ results not only address the long-standing debate among geologists about the cause of ancient sea level fluctuations, but they are “relevant to today’s discussions about climate change.”

In an earlier paper, DeConto and colleagues had showed that global cooling which began about 34 million years ago during the “greenhouse to icehouse transition” was probably related to declining greenhouse gas levels and less to ocean currents around Antarctica as once believed.

Rob DeConto | Newswise Science News
Further information:
http://www.umass.edu
http://www.geo.umass.edu

Further reports about: Antarctic Antarctica CO2 Hemisphere atmospheric CO2 global warming greenhouse ice sheet sea level

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>