Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

34 Million-Yr GHG Model: Earth Is CO2 Sensitive

20.10.2008
In a new model of atmospheric carbon dioxide levels, sea level variation, Northern Hemisphere ice sheets and Antarctic ice over the past 34 million years reported in Nature, University of Massachusetts Amherst climatologist Robert DeConto and colleagues at four other institutions cast new light on estimates of polar ice volume and the relationship to sea level. Their model has implications for understanding future effects of global warming.

Climatologist Robert DeConto of the University of Massachusetts Amherst and colleagues at four institutions are reporting in the Oct. 2 issue of the journal Nature that their latest climate model of the Northern Hemisphere suggests conditions would have allowed ice sheets to form there for the last 25 million years, or about 22 million years earlier than generally assumed.Their research has implications for the evaluation of global climate change.

When climate and ice sheet models of the past closely match other information, in this case sea-level data, climate scientists gain more precise tools for predicting future trends. “There’s a lot of mysterious sea-level variability over the last 25 million years that is difficult to explain with Antarctic ice alone,” DeConto says. “But if ice sheets and glaciers were present earlier in the Northern Hemisphere, as we think they might have been, they might provide the answer.”

With future CO2 levels expected by the year 2100 to approach levels not seen in the last 25 million years, understanding past conditions is crucial for predicting possible implications for Earth’s ice sheets and sea levels. “It’s important that we get this right,” DeConto says. “If we are correct, we are rewriting the history of the cryosphere over the past 34 million years and calling a lot of things into question. It’s a challenge to geologists.” The cryosphere is the planet’s total amount of snow, ice and frozen ground.

The new model, accounting for atmospheric CO2 and changes in Earth’s orbit around the sun among other variables, shows that the threshold of atmospheric CO2 at which large ice sheet development in the Northern Hemisphere is possible, is much lower than for Antarctica. The work, supported by the National Science Foundation, also suggests that climate, ice sheets and sea level may be far more sensitive to CO2 levels than generally accepted.

“The last time CO2 levels were as high as they are expected to reach in coming centuries, there was no big ice sheet on Antarctica because the planet was too warm,” DeConto says. “This is not to say that we’ll see the great East Antarctic Ice Sheet melt, because its large size and high elevations are self-sustaining. But it is alarming. We are trying to understand exactly what the effect of those high CO2 levels will be. It appears there will be an associated rise in sea level because much of the rest of the world’s ice cover could be affected.”

In addition to DeConto, the team includes climate researchers from Penn State University and Yale University in the United States and the University of Southampton and Cardiff University in Great Britain. Their paper published today is accompanied by an invited commentary by geologist Stephen Pekar of Queens College, New York, an expert on ancient sea level variation over the same period. He notes that DeConto and colleagues’ results not only address the long-standing debate among geologists about the cause of ancient sea level fluctuations, but they are “relevant to today’s discussions about climate change.”

In an earlier paper, DeConto and colleagues had showed that global cooling which began about 34 million years ago during the “greenhouse to icehouse transition” was probably related to declining greenhouse gas levels and less to ocean currents around Antarctica as once believed.

Rob DeConto | Newswise Science News
Further information:
http://www.umass.edu
http://www.geo.umass.edu

Further reports about: Antarctic Antarctica CO2 Hemisphere atmospheric CO2 global warming greenhouse ice sheet sea level

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>