Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Least 200,000 Tons of Oil and Gas from Deepwater Horizon Spill Consumed by Gulf Bacteria

13.09.2012
Researchers from the University of Rochester and Texas A&M University have found that, over a period of five months following the disastrous 2010 Deepwater Horizon explosion and oil spill, naturally-occurring bacteria that exist in the Gulf of Mexico consumed and removed at least 200,000 tons of oil and natural gas that spewed into the deep Gulf from the ruptured well head.
The researchers analyzed an extensive data set to determine not only how much oil and gas was eaten by bacteria, but also how the characteristics of this feast changed with time.

“A significant amount of the oil and gas that was released was retained within the ocean water more than one-half mile below the sea surface. It appears that the hydrocarbon-eating bacteria did a good job of removing the majority of the material that was retained in these layers,” said co-author John Kessler of the University of Rochester.

The results published this week in Environmental Science and Technology include the first measurements of how the rate at which the bacteria ate the oil and gas changed as this disaster progressed, information that is fundamental to understanding both this spill and predicting the behavior of future spills.
Kessler noted: “Interestingly, the oil and gas consumption rate was correlated with the addition of dispersants at the wellhead. While there is still much to learn about the appropriateness of using dispersants in a natural ecosystem, our results suggest it made the released hydrocarbons more available to the native Gulf of Mexico microorganisms. ”

Their measurements show that the consumption of the oil and gas by bacteria in the deep Gulf had stopped by September 2010, five months after the Deepwater Horizon explosion. “It is unclear if this indicates that this great feast was over by this time or if the microorganisms were simply taking a break before they start on dessert and coffee” said Kessler. “Our results suggest that some (about 40%) of the released hydrocarbons that once populated these layers still remained in the Gulf post September 2010, so food was available for the feast to continue at some later time. But the location of those substances and whether they were biochemically transformed is unknown.”
Previous studies of the Deepwater Horizon spill had shown that the oil and gas were trapped in underwater layers, or “plumes”, and that the bacteria had begun consuming the oil and gas. By using a more extensive data set, the researchers were able to measure just how many tons of hydrocarbons released from the spill had been removed in the deep Gulf waters. The team’s research suggests that the majority of what once composed these large underwater plumes of oil and gas was eaten by the bacteria.

Professor John Kessler, recently appointed as Associate Professor in the Department of Earth and Environmental Sciences of the University of Rochester, worked with graduate research assistant Mengran Du at Texas A&M University to analyze over 1300 profiles of oxygen dissolved in the Gulf of Mexico water spanning a period of four months and covering nearly 30,000 square miles.

The researchers calculated how many tons of oil and gas had been consumed and at what rate by first measuring how much oxygen had been removed from the ocean. Mengran Du explained that “when bacteria consume oil and gas, they use up oxygen and release carbon dioxide, just as humans do when we breathe. When bacteria die and decompose, that uses up still more oxygen. Both these processes remove oxygen from the water.” Du added that it is this lower oxygen level that the researchers could measure and use as an indicator of how much oil and gas had been removed by microorganisms and at what rate.

The work was supported by the National Science Foundation with additional contributions from the National Oceanic and Atmospheric Administration, the Sloan Foundation, BP/the Gulf of Mexico Research Initiative, and the Chinese Scholarship Council.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | Newswise Science News
Further information:
http://www.rochester.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>