Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Least 200,000 Tons of Oil and Gas from Deepwater Horizon Spill Consumed by Gulf Bacteria

13.09.2012
Researchers from the University of Rochester and Texas A&M University have found that, over a period of five months following the disastrous 2010 Deepwater Horizon explosion and oil spill, naturally-occurring bacteria that exist in the Gulf of Mexico consumed and removed at least 200,000 tons of oil and natural gas that spewed into the deep Gulf from the ruptured well head.
The researchers analyzed an extensive data set to determine not only how much oil and gas was eaten by bacteria, but also how the characteristics of this feast changed with time.

“A significant amount of the oil and gas that was released was retained within the ocean water more than one-half mile below the sea surface. It appears that the hydrocarbon-eating bacteria did a good job of removing the majority of the material that was retained in these layers,” said co-author John Kessler of the University of Rochester.

The results published this week in Environmental Science and Technology include the first measurements of how the rate at which the bacteria ate the oil and gas changed as this disaster progressed, information that is fundamental to understanding both this spill and predicting the behavior of future spills.
Kessler noted: “Interestingly, the oil and gas consumption rate was correlated with the addition of dispersants at the wellhead. While there is still much to learn about the appropriateness of using dispersants in a natural ecosystem, our results suggest it made the released hydrocarbons more available to the native Gulf of Mexico microorganisms. ”

Their measurements show that the consumption of the oil and gas by bacteria in the deep Gulf had stopped by September 2010, five months after the Deepwater Horizon explosion. “It is unclear if this indicates that this great feast was over by this time or if the microorganisms were simply taking a break before they start on dessert and coffee” said Kessler. “Our results suggest that some (about 40%) of the released hydrocarbons that once populated these layers still remained in the Gulf post September 2010, so food was available for the feast to continue at some later time. But the location of those substances and whether they were biochemically transformed is unknown.”
Previous studies of the Deepwater Horizon spill had shown that the oil and gas were trapped in underwater layers, or “plumes”, and that the bacteria had begun consuming the oil and gas. By using a more extensive data set, the researchers were able to measure just how many tons of hydrocarbons released from the spill had been removed in the deep Gulf waters. The team’s research suggests that the majority of what once composed these large underwater plumes of oil and gas was eaten by the bacteria.

Professor John Kessler, recently appointed as Associate Professor in the Department of Earth and Environmental Sciences of the University of Rochester, worked with graduate research assistant Mengran Du at Texas A&M University to analyze over 1300 profiles of oxygen dissolved in the Gulf of Mexico water spanning a period of four months and covering nearly 30,000 square miles.

The researchers calculated how many tons of oil and gas had been consumed and at what rate by first measuring how much oxygen had been removed from the ocean. Mengran Du explained that “when bacteria consume oil and gas, they use up oxygen and release carbon dioxide, just as humans do when we breathe. When bacteria die and decompose, that uses up still more oxygen. Both these processes remove oxygen from the water.” Du added that it is this lower oxygen level that the researchers could measure and use as an indicator of how much oil and gas had been removed by microorganisms and at what rate.

The work was supported by the National Science Foundation with additional contributions from the National Oceanic and Atmospheric Administration, the Sloan Foundation, BP/the Gulf of Mexico Research Initiative, and the Chinese Scholarship Council.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | Newswise Science News
Further information:
http://www.rochester.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>