Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Least 200,000 Tons of Oil and Gas from Deepwater Horizon Spill Consumed by Gulf Bacteria

13.09.2012
Researchers from the University of Rochester and Texas A&M University have found that, over a period of five months following the disastrous 2010 Deepwater Horizon explosion and oil spill, naturally-occurring bacteria that exist in the Gulf of Mexico consumed and removed at least 200,000 tons of oil and natural gas that spewed into the deep Gulf from the ruptured well head.
The researchers analyzed an extensive data set to determine not only how much oil and gas was eaten by bacteria, but also how the characteristics of this feast changed with time.

“A significant amount of the oil and gas that was released was retained within the ocean water more than one-half mile below the sea surface. It appears that the hydrocarbon-eating bacteria did a good job of removing the majority of the material that was retained in these layers,” said co-author John Kessler of the University of Rochester.

The results published this week in Environmental Science and Technology include the first measurements of how the rate at which the bacteria ate the oil and gas changed as this disaster progressed, information that is fundamental to understanding both this spill and predicting the behavior of future spills.
Kessler noted: “Interestingly, the oil and gas consumption rate was correlated with the addition of dispersants at the wellhead. While there is still much to learn about the appropriateness of using dispersants in a natural ecosystem, our results suggest it made the released hydrocarbons more available to the native Gulf of Mexico microorganisms. ”

Their measurements show that the consumption of the oil and gas by bacteria in the deep Gulf had stopped by September 2010, five months after the Deepwater Horizon explosion. “It is unclear if this indicates that this great feast was over by this time or if the microorganisms were simply taking a break before they start on dessert and coffee” said Kessler. “Our results suggest that some (about 40%) of the released hydrocarbons that once populated these layers still remained in the Gulf post September 2010, so food was available for the feast to continue at some later time. But the location of those substances and whether they were biochemically transformed is unknown.”
Previous studies of the Deepwater Horizon spill had shown that the oil and gas were trapped in underwater layers, or “plumes”, and that the bacteria had begun consuming the oil and gas. By using a more extensive data set, the researchers were able to measure just how many tons of hydrocarbons released from the spill had been removed in the deep Gulf waters. The team’s research suggests that the majority of what once composed these large underwater plumes of oil and gas was eaten by the bacteria.

Professor John Kessler, recently appointed as Associate Professor in the Department of Earth and Environmental Sciences of the University of Rochester, worked with graduate research assistant Mengran Du at Texas A&M University to analyze over 1300 profiles of oxygen dissolved in the Gulf of Mexico water spanning a period of four months and covering nearly 30,000 square miles.

The researchers calculated how many tons of oil and gas had been consumed and at what rate by first measuring how much oxygen had been removed from the ocean. Mengran Du explained that “when bacteria consume oil and gas, they use up oxygen and release carbon dioxide, just as humans do when we breathe. When bacteria die and decompose, that uses up still more oxygen. Both these processes remove oxygen from the water.” Du added that it is this lower oxygen level that the researchers could measure and use as an indicator of how much oil and gas had been removed by microorganisms and at what rate.

The work was supported by the National Science Foundation with additional contributions from the National Oceanic and Atmospheric Administration, the Sloan Foundation, BP/the Gulf of Mexico Research Initiative, and the Chinese Scholarship Council.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Leonor Sierra | Newswise Science News
Further information:
http://www.rochester.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>