Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


1 moose, 2 moose: Scientist seeks correction in number of species

It is a misinterpretation of the application of the bedrock of scientific naming with regard to the number of moose species that Kris Hundertmark, a University of Alaska Fairbanks wildlife geneticist at the Institute of Arctic Biology, seeks to correct.

The adoption of Carl Linnaeus' two-part, genus-species system of naming, called taxonomy, has been used for centuries on all described organisms on Earth and is considered one of the greatest triumphs in science.

Hundertmark will be presenting his research during the American Society of Mammalogists 89th Annual Meeting June 24-28 at UAF.

"When we give something its own name we're saying this is a unit of biodiversity that deserves to be conserved," Hundertmark said. "If you name something that doesn't deserve a name, you're wasting resources that could be spent on worthwhile groups."

The reference book Mammal Species of the World, which Hundertmark calls the "unofficial bible of what is a mammal species and what isn't," lists two species of moose. The two-species concept is based primarily on a difference in chromosome numbers and the physical structure, or morphology, of moose

Chromosomes are ranked and numbered by size, largest to smallest, and can be depicted in a standard format knows as a karyogram. A typical chromosome pair is shaped like an "X" connected at the middle, though some are V-shaped and connected at the apex. The karyogram for North American moose show 70 chromosome pairs. A Eurasian moose karyogram shows two V-shaped chromosomes that appear to have united to form one X-shaped chromosome resulting in 68 pairs.

"We've always known that North American moose have one more pair of chromosomes than Eurasian moose," Hundertmark said. "But it is a minor rearrangement rather than a functional difference."

The morphology argument is a nonstarter because similar physical differences exist among other animals considered one species and "… moose are distributed throughout the Northern Hemisphere and would be expected to exhibit regional variation in morphology," said Hundertmark.

One way of defining a species is whether two individuals can mate and produce viable offspring. If they can, they're the same species; if they can't, they're not. But transporting moose for breeding experiments is prohibitively expensive and according to Hundertmark it is not unreasonable to assume that the two types can interbreed until it is proven otherwise.

To test the two-species hypothesis, Hundertmark examined the DNA from moose tissue samples collected by colleagues around the world. He arranged the samples into two groups based on the two-species hypothesis and into three groups based on continent of origin - Europe, Asia and North America - and examined the distribution of genetic variation within and between groups.

"It turns out that there are actually three genetic groups of moose, not two, and the genetic differences among those groups do not rise to the level of separate species. It is just regional variation," Hundertmark said.

Marie Gilbert | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>