Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fishy lawnmowers' help save Pacific corals

11.11.2011
Can fish save coral reefs from dying? UC Santa Barbara researchers have found one case where fish have helped coral reefs to recover from cyclones and predators.

Coral reefs worldwide are increasingly disturbed by environmental events that are causing their decline, yet some coral reefs recover. UCSB researchers have discovered that the health of coral reefs in the South Pacific island of Moorea, in French Polynesia, may be due to protection by parrotfish and surgeonfish that eat algae, along with the protection of reefs that shelter juvenile fish.

The findings are published in a recent issue of the journal PLoS ONE. The UCSB research team is part of the Moorea Coral Reef Long-Term Ecological Research (MCR LTER) project, funded by the National Science Foundation.

In many cases, especially in the case of severely damaged reefs in the Caribbean, coral reefs that suffer large losses of live coral often become overgrown with algae and never return to a state where the reefs are again largely covered by live coral. In contrast, the reefs surrounding Moorea experienced large losses of live coral in the past –– most recently in the early 1980's –– and have returned each time to a system dominated by healthy, live corals.

"We wanted to know why Moorea's reefs seem to act differently than other reefs," said Tom Adam, first author, research associate with MCR LTER, and postdoctoral fellow at UCSB's Marine Science Institute. "Specifically, we wanted to know what ecological factors might be responsible for the dramatic patterns of recovery observed in Moorea."

The research team was surprised by its findings. The biomass of herbivores on the reef –– fish and other animals that eat plants like algae –– increased dramatically following the loss of live coral. "What was surprising to us was that the numbers of these species also increased dramatically," said Andrew Brooks, co-author, deputy program director of MCR LTER, and associate project scientist with MSI. "We were not simply seeing a case of bigger, fatter fishes –– we were seeing many more parrotfishes and surgeonfishes, all of whom happened to be bigger and fatter. We wanted to know where these new fishes were coming from."

The researchers also found that not all of the coral reefs around Moorea were affected equally by an outbreak of predatory crown-of-thorns sea stars or by cyclones. The crown-of-thorns sea stars did eat virtually all of the live coral on the barrier reef –– the reef that separates the shallow lagoons from the deeper ocean. However, neither the sea stars nor the cyclones had much impact on the corals growing on the fringing reef –– the reef that grows against the island.

"We discovered that these fringing reefs act as a nursery ground for baby fishes, most notably herbivorous fishes," said Brooks. "With more food available in the form of algae, the survivorship of these baby parrotfishes and surgeonfishes increased, providing more individuals to help control the algae on the fore reef. In effect, the large numbers of parrotfishes and surgeonfishes are acting like thousands of fishy lawnmowers, keeping the algae cropped down to levels low enough that there is still space for new baby corals to settle onto the reef and begin to grow."

A major reason the reefs in the Caribbean do not recover after serious disturbances is because these reefs lack healthy populations of parrotfishes and surgeonfishes, due to the effects of overfishing, explained Adam. "Without these species to help crop the algae down, these reefs quickly become overgrown with algae, a situation that makes it very hard for corals to re-establish themselves," he said.

Managers have tried to reverse the trend of overfishing through the creation of Marine Protected Areas (MPAs), where fishing is severely restricted or prohibited. "Our results suggest that this strategy may not be enough to reverse the trend of coral reefs becoming algal reefs," said Brooks. "Our new and very novel results suggest that it also is vital to protect the fringing reefs that serve as nursery grounds. Without these nursery grounds, populations of parrotfishes and surgeonfishes can't respond to increasing amounts of algae on the reefs by outputting more baby herbivores."

In short, the research team found that by using MPAs, managers can help protect adult fish, producing bigger, fatter fish. "But if you don't protect the nursery habitat –– the babies produced by these bigger fish, or by fish in other, nearby areas –– you can't increase the overall numbers of the important algae-eating fish on the reef," said Brooks.

According to the scientists, it appears that Moorea's reefs may recover. "One final bit of good news is that we are seeing tens of thousands of baby corals, some less than a half-inch in diameter, on the fore reefs surrounding Moorea," said Brooks.

MCR researchers will follow the coral reef recovery process over the next decade or more, in search of additional information that can aid managers of the world's coral reefs.

Additional co-authors are Russell J. Schmitt and Sally J. Holbrook of UCSB's Marine Science Institute and the Department of Ecology, Evolution, and Marine Biology; Peter J. Edmunds and Robert C. Carpenter of California State University, Northridge; and Giacomo Bernardi, of UC Santa Cruz.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>