Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fishy lawnmowers' help save Pacific corals

11.11.2011
Can fish save coral reefs from dying? UC Santa Barbara researchers have found one case where fish have helped coral reefs to recover from cyclones and predators.

Coral reefs worldwide are increasingly disturbed by environmental events that are causing their decline, yet some coral reefs recover. UCSB researchers have discovered that the health of coral reefs in the South Pacific island of Moorea, in French Polynesia, may be due to protection by parrotfish and surgeonfish that eat algae, along with the protection of reefs that shelter juvenile fish.

The findings are published in a recent issue of the journal PLoS ONE. The UCSB research team is part of the Moorea Coral Reef Long-Term Ecological Research (MCR LTER) project, funded by the National Science Foundation.

In many cases, especially in the case of severely damaged reefs in the Caribbean, coral reefs that suffer large losses of live coral often become overgrown with algae and never return to a state where the reefs are again largely covered by live coral. In contrast, the reefs surrounding Moorea experienced large losses of live coral in the past –– most recently in the early 1980's –– and have returned each time to a system dominated by healthy, live corals.

"We wanted to know why Moorea's reefs seem to act differently than other reefs," said Tom Adam, first author, research associate with MCR LTER, and postdoctoral fellow at UCSB's Marine Science Institute. "Specifically, we wanted to know what ecological factors might be responsible for the dramatic patterns of recovery observed in Moorea."

The research team was surprised by its findings. The biomass of herbivores on the reef –– fish and other animals that eat plants like algae –– increased dramatically following the loss of live coral. "What was surprising to us was that the numbers of these species also increased dramatically," said Andrew Brooks, co-author, deputy program director of MCR LTER, and associate project scientist with MSI. "We were not simply seeing a case of bigger, fatter fishes –– we were seeing many more parrotfishes and surgeonfishes, all of whom happened to be bigger and fatter. We wanted to know where these new fishes were coming from."

The researchers also found that not all of the coral reefs around Moorea were affected equally by an outbreak of predatory crown-of-thorns sea stars or by cyclones. The crown-of-thorns sea stars did eat virtually all of the live coral on the barrier reef –– the reef that separates the shallow lagoons from the deeper ocean. However, neither the sea stars nor the cyclones had much impact on the corals growing on the fringing reef –– the reef that grows against the island.

"We discovered that these fringing reefs act as a nursery ground for baby fishes, most notably herbivorous fishes," said Brooks. "With more food available in the form of algae, the survivorship of these baby parrotfishes and surgeonfishes increased, providing more individuals to help control the algae on the fore reef. In effect, the large numbers of parrotfishes and surgeonfishes are acting like thousands of fishy lawnmowers, keeping the algae cropped down to levels low enough that there is still space for new baby corals to settle onto the reef and begin to grow."

A major reason the reefs in the Caribbean do not recover after serious disturbances is because these reefs lack healthy populations of parrotfishes and surgeonfishes, due to the effects of overfishing, explained Adam. "Without these species to help crop the algae down, these reefs quickly become overgrown with algae, a situation that makes it very hard for corals to re-establish themselves," he said.

Managers have tried to reverse the trend of overfishing through the creation of Marine Protected Areas (MPAs), where fishing is severely restricted or prohibited. "Our results suggest that this strategy may not be enough to reverse the trend of coral reefs becoming algal reefs," said Brooks. "Our new and very novel results suggest that it also is vital to protect the fringing reefs that serve as nursery grounds. Without these nursery grounds, populations of parrotfishes and surgeonfishes can't respond to increasing amounts of algae on the reefs by outputting more baby herbivores."

In short, the research team found that by using MPAs, managers can help protect adult fish, producing bigger, fatter fish. "But if you don't protect the nursery habitat –– the babies produced by these bigger fish, or by fish in other, nearby areas –– you can't increase the overall numbers of the important algae-eating fish on the reef," said Brooks.

According to the scientists, it appears that Moorea's reefs may recover. "One final bit of good news is that we are seeing tens of thousands of baby corals, some less than a half-inch in diameter, on the fore reefs surrounding Moorea," said Brooks.

MCR researchers will follow the coral reef recovery process over the next decade or more, in search of additional information that can aid managers of the world's coral reefs.

Additional co-authors are Russell J. Schmitt and Sally J. Holbrook of UCSB's Marine Science Institute and the Department of Ecology, Evolution, and Marine Biology; Peter J. Edmunds and Robert C. Carpenter of California State University, Northridge; and Giacomo Bernardi, of UC Santa Cruz.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>