Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel 'attract-and-kill' approach could help tackle Argentine ants

07.01.2014
UC Riverside entomologists devise a technique that involves mixing a synthetic pheromone in insecticide sprays

After being inadvertently introduced in the United States from South America, Argentine ants have successfully invaded urban, agricultural, and natural settings nationwide.


This photo shows Argentine ants.

Credit: D-H Choe Lab, UC Riverside.

In urban California, the Argentine ant is among the primary pest ants. For example, this particular species of ants makes up 85 percent of ants sampled by commercial pest control companies in just the Greater San Diego Area.

Entomologists at the University of California, Riverside have now developed a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the invasive Argentine ant.

They supplemented insecticide sprays with (Z)-9-hexadecenal, a pheromone compound attractive to ants, and were able to divert Argentine ants from their trails and nest entrances. Lured by the pheromone, the ants were eventually exposed to the insecticide residue, and killed.

Study results appeared Dec. 23, 2013, in the online fast track edition of the Journal of Economic Entomology.

"Our experiments with fipronil and bifenthrin sprays indicate that the overall kill of these insecticides on Argentine ant colonies is substantially improved — by 57 to 142 percent — by incorporating (Z)-9-hexadecenal in the sprays," said Dong-Hwan Choe, an assistant professor of entomology and the research project leader, whose lab focuses on urban entomology, insect behavior and chemical ecology.

According to Choe's research team, the current "attract-and-kill" approach, once it is successfully implemented in practical pest management programs, could potentially provide maximum control efficacy with reduced amount of insecticides applied in the environment.

"Given the amount of insecticides applied today to urban settings for Argentine ant control and the impact of these insecticides on urban waterways, it is critical to develop alternative integrated pest management strategies in order to decrease the overall amounts of insecticides applied and found in urban waterways, while still providing effective control of the target ant species," Choe said.

He explained that other studies have explored the possibility of using the synthetic pheromone (Z)-9-hexadecenal for Argentine management program. These studies, however, only explored the use of the pheromone to disrupt the foraging of Argentine ants.

"What makes our study unique is that we combine the insecticide sprays and low-dose pheromone to attract ants," Choe said. "Our ultimate goal is to minimize the impact of pest damages on urban life with, at the same time, no — or minimal — negative impact on the environment, non-target organisms, and human health."

According to Choe, from a practical standpoint, future development of the proper formulation of (Z)-9-hexadecenal would help improve its efficacy and usability.

"The physicochemical characteristics of the pheromone formulation are important factors in improving the persistence of its effect," he said. "Proper packaging also would be necessary because the pheromone's stability could be compromised if the pheromone is mixed with the insecticide formulation and held in long-term storage. Some of these questions could be addressed with assistance from industry collaborators."

The UCR Office of Technology Commercialization has filed a patent on the pheromone-assisted technique developed by the researchers.

Choe was accompanied in the research by UCR undergraduate students Kasumi Tsai and Carlos M. Lopez; and laboratory staff research associate Kathleen Campbell.

Study details:

The study used one milligram of synthetic (Z)-9-hexadecenal per 500 milliliters of spray preparation (0.002 milligrams per milliliter). Given that the typical amount of spray preparation applied in an average size house is about 1.9-3.8 liters (0.5-1 gallons), the total amount of pheromone required for treating a house would be less than 10 milligrams. Based on the current price of the synthetic pheromone (less than $40 for one gram), 10 milligrams of synthetic (Z)-9-hexadecenal would cost approximately $0.40. If the pheromone-assisted techniques are effective in reducing the amount of insecticide for achieving a satisfactory level of control, homeowners or commercial pest management companies could reduce both the amount of active ingredient applied in the environment and the insecticide cost.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>