Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel 'attract-and-kill' approach could help tackle Argentine ants

07.01.2014
UC Riverside entomologists devise a technique that involves mixing a synthetic pheromone in insecticide sprays

After being inadvertently introduced in the United States from South America, Argentine ants have successfully invaded urban, agricultural, and natural settings nationwide.


This photo shows Argentine ants.

Credit: D-H Choe Lab, UC Riverside.

In urban California, the Argentine ant is among the primary pest ants. For example, this particular species of ants makes up 85 percent of ants sampled by commercial pest control companies in just the Greater San Diego Area.

Entomologists at the University of California, Riverside have now developed a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the invasive Argentine ant.

They supplemented insecticide sprays with (Z)-9-hexadecenal, a pheromone compound attractive to ants, and were able to divert Argentine ants from their trails and nest entrances. Lured by the pheromone, the ants were eventually exposed to the insecticide residue, and killed.

Study results appeared Dec. 23, 2013, in the online fast track edition of the Journal of Economic Entomology.

"Our experiments with fipronil and bifenthrin sprays indicate that the overall kill of these insecticides on Argentine ant colonies is substantially improved — by 57 to 142 percent — by incorporating (Z)-9-hexadecenal in the sprays," said Dong-Hwan Choe, an assistant professor of entomology and the research project leader, whose lab focuses on urban entomology, insect behavior and chemical ecology.

According to Choe's research team, the current "attract-and-kill" approach, once it is successfully implemented in practical pest management programs, could potentially provide maximum control efficacy with reduced amount of insecticides applied in the environment.

"Given the amount of insecticides applied today to urban settings for Argentine ant control and the impact of these insecticides on urban waterways, it is critical to develop alternative integrated pest management strategies in order to decrease the overall amounts of insecticides applied and found in urban waterways, while still providing effective control of the target ant species," Choe said.

He explained that other studies have explored the possibility of using the synthetic pheromone (Z)-9-hexadecenal for Argentine management program. These studies, however, only explored the use of the pheromone to disrupt the foraging of Argentine ants.

"What makes our study unique is that we combine the insecticide sprays and low-dose pheromone to attract ants," Choe said. "Our ultimate goal is to minimize the impact of pest damages on urban life with, at the same time, no — or minimal — negative impact on the environment, non-target organisms, and human health."

According to Choe, from a practical standpoint, future development of the proper formulation of (Z)-9-hexadecenal would help improve its efficacy and usability.

"The physicochemical characteristics of the pheromone formulation are important factors in improving the persistence of its effect," he said. "Proper packaging also would be necessary because the pheromone's stability could be compromised if the pheromone is mixed with the insecticide formulation and held in long-term storage. Some of these questions could be addressed with assistance from industry collaborators."

The UCR Office of Technology Commercialization has filed a patent on the pheromone-assisted technique developed by the researchers.

Choe was accompanied in the research by UCR undergraduate students Kasumi Tsai and Carlos M. Lopez; and laboratory staff research associate Kathleen Campbell.

Study details:

The study used one milligram of synthetic (Z)-9-hexadecenal per 500 milliliters of spray preparation (0.002 milligrams per milliliter). Given that the typical amount of spray preparation applied in an average size house is about 1.9-3.8 liters (0.5-1 gallons), the total amount of pheromone required for treating a house would be less than 10 milligrams. Based on the current price of the synthetic pheromone (less than $40 for one gram), 10 milligrams of synthetic (Z)-9-hexadecenal would cost approximately $0.40. If the pheromone-assisted techniques are effective in reducing the amount of insecticide for achieving a satisfactory level of control, homeowners or commercial pest management companies could reduce both the amount of active ingredient applied in the environment and the insecticide cost.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>