Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s biggest trailing suction dredger

29.04.2015

Siemens drives enable dredging to 120 meters

The Malaysian shipping company Inai Kiara SDN BHD has unveiled the world’s biggest suction dredger. To allow use in water depths of up to 120 meters and ensure that all the components could be accommodated within the constrained dimensions of the ship’s hull, the shipbuilder opted to use drive technology from Siemens.

Almost 200 meters in length and with a loading capacity of over 30,000 cubic meters, the new Inai Kenanga dredger belonging to the shipping company Inai Kiara SDN BHD is one of the world’s biggest hopper suction dredgers. This type of ship is used for mining raw materials or for deepening and widening waterways.

The dredged material is suctioned off the water bed using two lateral suction pipes and pumped into the hopper. The water contained in the material is separated and returned to the waterway. Using its standard equipment, the hopper suction dredger is able to reach depths of up to 35 meters. With the aid of extended trail pipes and additional pumps, it is capable of reaching depths as great as 120 meters.

Flender gearboxes for maximum output

The Inai Kenanga is fitted with a double engine system which drives the propellers and suction pump systems simultaneously. Two switchable GJZ 2250 type dredger gearboxes from Siemens were used for the main pump.

Because their three switchable gear stages enable the output speed to be adjusted in line with the changing operating conditions of the driven pumps, these Flender gearboxes between the motor and pump allow the pumps to operate at maximum suction output.

As a result, both suction from different depths and dis­charge of the load can take place using just a single drive. For the dis­charge process, the pumps can additionally be switched in series. When discharging loads, two jet pumps with electric motors and type G1EE 630 pump gearboxes are optionally also available.

The two large gearboxes, each weighing over 90 tons, are driven by two MAN series 12V48/60 main engines with a total output of 26,500 kilowatts. Type GUCQ 1470 propulsion gearboxes are arranged behind the main engines. These are used for driving the hopper dredger and are designed for a full engine output of 13,250 kilowatts each.

Space-saving complete solution

The challenge inherent in designing the complete drive system was the need to accommodate it in a restricted space. Siemens rose to the challenge by coming up with a highly space-saving design for the gearbox. The layout selected also permits easy maintenance of the hydraulic couplings mounted at the back. «


Siemens Flender Gear Units

www.industry.siemens.com/drives/global/en/gear-units/Pages/Default.aspx

www.siemens.com

Contact

Siemens AG
Communications and Government Affairs
Internal and External Communications
Gleiwitzer Str. 555
90475 Nuremberg, Germany

Contact MediaService
Ursula Lang
Tel.: +49 (0)911- 895 7947

ursula.lang@siemens.com

Ursula Lang | Siemens MediaService

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>