Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s biggest trailing suction dredger

29.04.2015

Siemens drives enable dredging to 120 meters

The Malaysian shipping company Inai Kiara SDN BHD has unveiled the world’s biggest suction dredger. To allow use in water depths of up to 120 meters and ensure that all the components could be accommodated within the constrained dimensions of the ship’s hull, the shipbuilder opted to use drive technology from Siemens.

Almost 200 meters in length and with a loading capacity of over 30,000 cubic meters, the new Inai Kenanga dredger belonging to the shipping company Inai Kiara SDN BHD is one of the world’s biggest hopper suction dredgers. This type of ship is used for mining raw materials or for deepening and widening waterways.

The dredged material is suctioned off the water bed using two lateral suction pipes and pumped into the hopper. The water contained in the material is separated and returned to the waterway. Using its standard equipment, the hopper suction dredger is able to reach depths of up to 35 meters. With the aid of extended trail pipes and additional pumps, it is capable of reaching depths as great as 120 meters.

Flender gearboxes for maximum output

The Inai Kenanga is fitted with a double engine system which drives the propellers and suction pump systems simultaneously. Two switchable GJZ 2250 type dredger gearboxes from Siemens were used for the main pump.

Because their three switchable gear stages enable the output speed to be adjusted in line with the changing operating conditions of the driven pumps, these Flender gearboxes between the motor and pump allow the pumps to operate at maximum suction output.

As a result, both suction from different depths and dis­charge of the load can take place using just a single drive. For the dis­charge process, the pumps can additionally be switched in series. When discharging loads, two jet pumps with electric motors and type G1EE 630 pump gearboxes are optionally also available.

The two large gearboxes, each weighing over 90 tons, are driven by two MAN series 12V48/60 main engines with a total output of 26,500 kilowatts. Type GUCQ 1470 propulsion gearboxes are arranged behind the main engines. These are used for driving the hopper dredger and are designed for a full engine output of 13,250 kilowatts each.

Space-saving complete solution

The challenge inherent in designing the complete drive system was the need to accommodate it in a restricted space. Siemens rose to the challenge by coming up with a highly space-saving design for the gearbox. The layout selected also permits easy maintenance of the hydraulic couplings mounted at the back. «


Siemens Flender Gear Units

www.industry.siemens.com/drives/global/en/gear-units/Pages/Default.aspx

www.siemens.com

Contact

Siemens AG
Communications and Government Affairs
Internal and External Communications
Gleiwitzer Str. 555
90475 Nuremberg, Germany

Contact MediaService
Ursula Lang
Tel.: +49 (0)911- 895 7947

ursula.lang@siemens.com

Ursula Lang | Siemens MediaService

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>