Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable camber airfoil: New concept, new challenge

20.06.2012
Aircraft morphing, especially in the case of the variable camber airfoil, has potential from the viewpoints of both fundamental aerodynamics and flight application.

In the field of aerodynamics, the use of a variable camber airfoil can improve aircraft flight performance and allow efficient multiple missions; in biology, the concept of the variable camber airfoil can be employed to explain the mystery of animal flight.


This image shows the construction of a variable camber airfoil and a real model. Credit: © Science China Press

In the case of low-speed aircraft, the performance of low-Reynolds-number airfoils is greatly determined by the relatively feeble separation resistance of the laminar boundary layer. Better understanding and effective control of laminar separation is therefore valuable for improving the flight mechanics of low-Reynolds-number aircraft such as micro air vehicles (MAVs). Recent research has demonstrated that the variable camber airfoil has obvious advantages in terms of the control of separation and flight maneuverability.

Furthermore, compliant deformation of the airfoil helps explain the nature of the aerodynamic characteristics of a membrane wing such as that of a bat. However, little attention has been paid to the quasi-steady aerodynamic characteristics resulting from the camber deformation and the effect of different initial flow conditions.

Professor Yang Jiming and his group at the University of Science and Technology of China set out to explore this area of research. Through aerodynamic load measurements and related flow visualization, they distinguished the aerodynamic characteristics of the variable camber airfoil for steady and quasi-steady flow separation behaviors. Their work, entitled "Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, Vol. 42(4).

The group firstly designed a type of variable camber airfoil test model whose camber can be changed smoothly. The baseline airfoil is assumed to have an NACA 0015 profile. A rigid D-spar, the primary load carrying member, extends from the leading edge of the airfoil to the 30-percent chord. The D-spar does not undergo any deformation in the chordwise direction, and consequently, only the section aft of the D-spar can deform. This section aft of the spar is specially designed to have an internal substructure. The substructure comprises five rows of hinge-like units ranked serially along the chordwise direction.

The substructure is designed to support a flexible skin that provides the aerodynamic shape and is capable of morphing. A servomotor was fixed in the D-spar to provide power to pull the lower surface of the aft section into the D-spar to a certain extent with the help of gearing. As part of the lower surface is pulled into the D-spar, there is a discrepancy in the area between the upper surface and lower surface and the airfoil is thus asymmetric; in other words, the airfoil has some camber. The D-spar was made with acrylic materials and the skin of the aft section was made with polypropylene plastics.

Aerodynamic load measurements and a flow visualization technique such as particle image velocimetry are combined to reveal the aerodynamic characteristics resulting from the camber deformation and corresponding flow structures, from which the complex mechanism is hopefully determined. Research shows that on the occasion of flow separation, different camber deformation paths have totally distinct aerodynamic characteristics. Professor Yang's group found that the stall type determines the distinction. For some camber deformation paths, the stall is a type of leading-edge stall.

During this stall process, flow separates rather suddenly and abruptly over the entire top surface of the airfoil, with the origin of this separation being at the leading edge. Therefore, the lift of the airfoil is rather low under the circumstances of large camber. However, for other camber deformation paths, the stall is a type of trailing-edge stall. For this type of stall, there is progressive and gradual movement of separation from the trailing edge toward the leading edge as the camber is increased. Because of this, the trailing-edge stall is "soft" compared with the leading-edge stall and the lift is higher under the same conditions.

Therefore, under flow-separation circumstances, the flow around the airfoil is related not only to the current environment but also to the previous flow characteristics, and the history of flow evolvement should thus be considered in the design of low-Reynolds-number aircraft. The role of the history of flow evolvement tends to be overlooked in traditional aircraft design. Designers often only focus on the steady aerodynamic characteristics of an aircraft. However, to further improve the flight performance of MAVs, engineers will have to face this new challenge.

See the article: Yang W C, Yang J T, Wang J, et al. Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing. SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol. 42(4).

Yang Jiming | EurekAlert!
Further information:
http://www.ustc.edu.cn.cn
http://zh.scichina.com/english/

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>