Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable camber airfoil: New concept, new challenge

20.06.2012
Aircraft morphing, especially in the case of the variable camber airfoil, has potential from the viewpoints of both fundamental aerodynamics and flight application.

In the field of aerodynamics, the use of a variable camber airfoil can improve aircraft flight performance and allow efficient multiple missions; in biology, the concept of the variable camber airfoil can be employed to explain the mystery of animal flight.


This image shows the construction of a variable camber airfoil and a real model. Credit: © Science China Press

In the case of low-speed aircraft, the performance of low-Reynolds-number airfoils is greatly determined by the relatively feeble separation resistance of the laminar boundary layer. Better understanding and effective control of laminar separation is therefore valuable for improving the flight mechanics of low-Reynolds-number aircraft such as micro air vehicles (MAVs). Recent research has demonstrated that the variable camber airfoil has obvious advantages in terms of the control of separation and flight maneuverability.

Furthermore, compliant deformation of the airfoil helps explain the nature of the aerodynamic characteristics of a membrane wing such as that of a bat. However, little attention has been paid to the quasi-steady aerodynamic characteristics resulting from the camber deformation and the effect of different initial flow conditions.

Professor Yang Jiming and his group at the University of Science and Technology of China set out to explore this area of research. Through aerodynamic load measurements and related flow visualization, they distinguished the aerodynamic characteristics of the variable camber airfoil for steady and quasi-steady flow separation behaviors. Their work, entitled "Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, Vol. 42(4).

The group firstly designed a type of variable camber airfoil test model whose camber can be changed smoothly. The baseline airfoil is assumed to have an NACA 0015 profile. A rigid D-spar, the primary load carrying member, extends from the leading edge of the airfoil to the 30-percent chord. The D-spar does not undergo any deformation in the chordwise direction, and consequently, only the section aft of the D-spar can deform. This section aft of the spar is specially designed to have an internal substructure. The substructure comprises five rows of hinge-like units ranked serially along the chordwise direction.

The substructure is designed to support a flexible skin that provides the aerodynamic shape and is capable of morphing. A servomotor was fixed in the D-spar to provide power to pull the lower surface of the aft section into the D-spar to a certain extent with the help of gearing. As part of the lower surface is pulled into the D-spar, there is a discrepancy in the area between the upper surface and lower surface and the airfoil is thus asymmetric; in other words, the airfoil has some camber. The D-spar was made with acrylic materials and the skin of the aft section was made with polypropylene plastics.

Aerodynamic load measurements and a flow visualization technique such as particle image velocimetry are combined to reveal the aerodynamic characteristics resulting from the camber deformation and corresponding flow structures, from which the complex mechanism is hopefully determined. Research shows that on the occasion of flow separation, different camber deformation paths have totally distinct aerodynamic characteristics. Professor Yang's group found that the stall type determines the distinction. For some camber deformation paths, the stall is a type of leading-edge stall.

During this stall process, flow separates rather suddenly and abruptly over the entire top surface of the airfoil, with the origin of this separation being at the leading edge. Therefore, the lift of the airfoil is rather low under the circumstances of large camber. However, for other camber deformation paths, the stall is a type of trailing-edge stall. For this type of stall, there is progressive and gradual movement of separation from the trailing edge toward the leading edge as the camber is increased. Because of this, the trailing-edge stall is "soft" compared with the leading-edge stall and the lift is higher under the same conditions.

Therefore, under flow-separation circumstances, the flow around the airfoil is related not only to the current environment but also to the previous flow characteristics, and the history of flow evolvement should thus be considered in the design of low-Reynolds-number aircraft. The role of the history of flow evolvement tends to be overlooked in traditional aircraft design. Designers often only focus on the steady aerodynamic characteristics of an aircraft. However, to further improve the flight performance of MAVs, engineers will have to face this new challenge.

See the article: Yang W C, Yang J T, Wang J, et al. Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing. SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol. 42(4).

Yang Jiming | EurekAlert!
Further information:
http://www.ustc.edu.cn.cn
http://zh.scichina.com/english/

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>