Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable camber airfoil: New concept, new challenge

20.06.2012
Aircraft morphing, especially in the case of the variable camber airfoil, has potential from the viewpoints of both fundamental aerodynamics and flight application.

In the field of aerodynamics, the use of a variable camber airfoil can improve aircraft flight performance and allow efficient multiple missions; in biology, the concept of the variable camber airfoil can be employed to explain the mystery of animal flight.


This image shows the construction of a variable camber airfoil and a real model. Credit: © Science China Press

In the case of low-speed aircraft, the performance of low-Reynolds-number airfoils is greatly determined by the relatively feeble separation resistance of the laminar boundary layer. Better understanding and effective control of laminar separation is therefore valuable for improving the flight mechanics of low-Reynolds-number aircraft such as micro air vehicles (MAVs). Recent research has demonstrated that the variable camber airfoil has obvious advantages in terms of the control of separation and flight maneuverability.

Furthermore, compliant deformation of the airfoil helps explain the nature of the aerodynamic characteristics of a membrane wing such as that of a bat. However, little attention has been paid to the quasi-steady aerodynamic characteristics resulting from the camber deformation and the effect of different initial flow conditions.

Professor Yang Jiming and his group at the University of Science and Technology of China set out to explore this area of research. Through aerodynamic load measurements and related flow visualization, they distinguished the aerodynamic characteristics of the variable camber airfoil for steady and quasi-steady flow separation behaviors. Their work, entitled "Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, Vol. 42(4).

The group firstly designed a type of variable camber airfoil test model whose camber can be changed smoothly. The baseline airfoil is assumed to have an NACA 0015 profile. A rigid D-spar, the primary load carrying member, extends from the leading edge of the airfoil to the 30-percent chord. The D-spar does not undergo any deformation in the chordwise direction, and consequently, only the section aft of the D-spar can deform. This section aft of the spar is specially designed to have an internal substructure. The substructure comprises five rows of hinge-like units ranked serially along the chordwise direction.

The substructure is designed to support a flexible skin that provides the aerodynamic shape and is capable of morphing. A servomotor was fixed in the D-spar to provide power to pull the lower surface of the aft section into the D-spar to a certain extent with the help of gearing. As part of the lower surface is pulled into the D-spar, there is a discrepancy in the area between the upper surface and lower surface and the airfoil is thus asymmetric; in other words, the airfoil has some camber. The D-spar was made with acrylic materials and the skin of the aft section was made with polypropylene plastics.

Aerodynamic load measurements and a flow visualization technique such as particle image velocimetry are combined to reveal the aerodynamic characteristics resulting from the camber deformation and corresponding flow structures, from which the complex mechanism is hopefully determined. Research shows that on the occasion of flow separation, different camber deformation paths have totally distinct aerodynamic characteristics. Professor Yang's group found that the stall type determines the distinction. For some camber deformation paths, the stall is a type of leading-edge stall.

During this stall process, flow separates rather suddenly and abruptly over the entire top surface of the airfoil, with the origin of this separation being at the leading edge. Therefore, the lift of the airfoil is rather low under the circumstances of large camber. However, for other camber deformation paths, the stall is a type of trailing-edge stall. For this type of stall, there is progressive and gradual movement of separation from the trailing edge toward the leading edge as the camber is increased. Because of this, the trailing-edge stall is "soft" compared with the leading-edge stall and the lift is higher under the same conditions.

Therefore, under flow-separation circumstances, the flow around the airfoil is related not only to the current environment but also to the previous flow characteristics, and the history of flow evolvement should thus be considered in the design of low-Reynolds-number aircraft. The role of the history of flow evolvement tends to be overlooked in traditional aircraft design. Designers often only focus on the steady aerodynamic characteristics of an aircraft. However, to further improve the flight performance of MAVs, engineers will have to face this new challenge.

See the article: Yang W C, Yang J T, Wang J, et al. Experimental investigation on the quasi-steady flow separation behaviors of a variable camber wing. SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol. 42(4).

Yang Jiming | EurekAlert!
Further information:
http://www.ustc.edu.cn.cn
http://zh.scichina.com/english/

More articles from Machine Engineering:

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>