Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Stuttgart opens Centre of Excellence for Laser-Doppler vibrometry in biomechanics

20.11.2013
From mechanical engineering to the middle ear

A new centre of excellence for Laser-Doppler vibrometry is opening today at the University of Stuttgart, the aim of which is to make measurement techniques from mechanical engineering beneficial for biomechanics.


3D – vibration measurement on an experimental model. Photo: Universität Stuttgart/ ITM

The cooperation is supported by the Institute for Technical and Numeric Mechanics (ITM) at the University of der Stuttgart as well as Polytec from Waldbronn, the world market leader in the field of non-contact vibration measurement technology. Those with hearing impairments in particular will benefit from the research.

“Thanks to our equipment in laser measurement technology, we are creating conditions for excellent research and a sound training”, according to the Head of ITM, Prof. Peter Eberhard. Dr. Stefan König, responsible for sales in South Germany at Polytec: “Laser-Doppler vibrometry at ITM enables us to make interesting applications and profound analyses.“

Laser-Doppler vibrometry is a measurement technique that records even the smallest of movements in the nanometre range, and through this makes highly dynamic processes in particular accessible without influencing the measurement object. They are traditionally used in technical systems like machines, robots or vehicles. “Laser vibrometry is a basic methodological approach to record and to understand vibrations. It can therefore also be used with biomechanical processes, such as sound transmission through the middle ear to the inner ear“, explained Dr. Albrecht Eiber.

The deputy head of ITM has already been researching for several years with processes, such as computer simulation on implants that enables hearing damaged through age, illness or an accident to be reconstructed. Along with passive prostheses with the function of “spare parts”, active prostheses are also thereby developed that strengthen the incoming acoustic signal within the ear.

How the prostheses actually behave in the case of different tones and how well the patient hears again after an operation was, however, hard to determine for a long time due to the tight conditions in the middle or inner ear and the patient’s exposure to pain. These types of measures are possible with the help of the contact-free Laser-Doppler vibrometry. It therefore makes a valuable contribution to the development of passive implants and active hearing aids that are effective and favourably priced, can be used in a minimally invasive way and offer the patient the maximum degree of comfort and security.

On the way there ITM has been cooeprating with the university clinics of Zurich, Cologne and Hanover as well as with several business partners. For several years the institute has been working with varoius types of Laser-Doppler vibrometres from Polytec, so that considerable joint competences have been able to be established.

The idea is to exchange experiences and know-how in the framework of the centre of excellence and to show future application possibilities for Laser-Doppler vibrometry in biomechanics, medicine and mechanical engineering. In addition, linking measurement and simulations plays an important role. A diverse range of questions for project, degree and doctoral work arise for the students regarding everything to do with the topic of vibration measurement technology and Laser-Doppler vibrometry.

Further information:
Prof. Peter Eberhard, Dr. Albrecht Eiber, University of Stuttgart, Institute for Technical and Numeric Mechanics, Tel. 0711/685- 66389, -66393,

Email: peter.eberhard (at) itm.uni-stuttgart.de, albrecht.eiber (at) itm.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,

Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>