Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Stuttgart opens Centre of Excellence for Laser-Doppler vibrometry in biomechanics

20.11.2013
From mechanical engineering to the middle ear

A new centre of excellence for Laser-Doppler vibrometry is opening today at the University of Stuttgart, the aim of which is to make measurement techniques from mechanical engineering beneficial for biomechanics.


3D – vibration measurement on an experimental model. Photo: Universität Stuttgart/ ITM

The cooperation is supported by the Institute for Technical and Numeric Mechanics (ITM) at the University of der Stuttgart as well as Polytec from Waldbronn, the world market leader in the field of non-contact vibration measurement technology. Those with hearing impairments in particular will benefit from the research.

“Thanks to our equipment in laser measurement technology, we are creating conditions for excellent research and a sound training”, according to the Head of ITM, Prof. Peter Eberhard. Dr. Stefan König, responsible for sales in South Germany at Polytec: “Laser-Doppler vibrometry at ITM enables us to make interesting applications and profound analyses.“

Laser-Doppler vibrometry is a measurement technique that records even the smallest of movements in the nanometre range, and through this makes highly dynamic processes in particular accessible without influencing the measurement object. They are traditionally used in technical systems like machines, robots or vehicles. “Laser vibrometry is a basic methodological approach to record and to understand vibrations. It can therefore also be used with biomechanical processes, such as sound transmission through the middle ear to the inner ear“, explained Dr. Albrecht Eiber.

The deputy head of ITM has already been researching for several years with processes, such as computer simulation on implants that enables hearing damaged through age, illness or an accident to be reconstructed. Along with passive prostheses with the function of “spare parts”, active prostheses are also thereby developed that strengthen the incoming acoustic signal within the ear.

How the prostheses actually behave in the case of different tones and how well the patient hears again after an operation was, however, hard to determine for a long time due to the tight conditions in the middle or inner ear and the patient’s exposure to pain. These types of measures are possible with the help of the contact-free Laser-Doppler vibrometry. It therefore makes a valuable contribution to the development of passive implants and active hearing aids that are effective and favourably priced, can be used in a minimally invasive way and offer the patient the maximum degree of comfort and security.

On the way there ITM has been cooeprating with the university clinics of Zurich, Cologne and Hanover as well as with several business partners. For several years the institute has been working with varoius types of Laser-Doppler vibrometres from Polytec, so that considerable joint competences have been able to be established.

The idea is to exchange experiences and know-how in the framework of the centre of excellence and to show future application possibilities for Laser-Doppler vibrometry in biomechanics, medicine and mechanical engineering. In addition, linking measurement and simulations plays an important role. A diverse range of questions for project, degree and doctoral work arise for the students regarding everything to do with the topic of vibration measurement technology and Laser-Doppler vibrometry.

Further information:
Prof. Peter Eberhard, Dr. Albrecht Eiber, University of Stuttgart, Institute for Technical and Numeric Mechanics, Tel. 0711/685- 66389, -66393,

Email: peter.eberhard (at) itm.uni-stuttgart.de, albrecht.eiber (at) itm.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,

Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>