Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Stuttgart opens Centre of Excellence for Laser-Doppler vibrometry in biomechanics

20.11.2013
From mechanical engineering to the middle ear

A new centre of excellence for Laser-Doppler vibrometry is opening today at the University of Stuttgart, the aim of which is to make measurement techniques from mechanical engineering beneficial for biomechanics.


3D – vibration measurement on an experimental model. Photo: Universität Stuttgart/ ITM

The cooperation is supported by the Institute for Technical and Numeric Mechanics (ITM) at the University of der Stuttgart as well as Polytec from Waldbronn, the world market leader in the field of non-contact vibration measurement technology. Those with hearing impairments in particular will benefit from the research.

“Thanks to our equipment in laser measurement technology, we are creating conditions for excellent research and a sound training”, according to the Head of ITM, Prof. Peter Eberhard. Dr. Stefan König, responsible for sales in South Germany at Polytec: “Laser-Doppler vibrometry at ITM enables us to make interesting applications and profound analyses.“

Laser-Doppler vibrometry is a measurement technique that records even the smallest of movements in the nanometre range, and through this makes highly dynamic processes in particular accessible without influencing the measurement object. They are traditionally used in technical systems like machines, robots or vehicles. “Laser vibrometry is a basic methodological approach to record and to understand vibrations. It can therefore also be used with biomechanical processes, such as sound transmission through the middle ear to the inner ear“, explained Dr. Albrecht Eiber.

The deputy head of ITM has already been researching for several years with processes, such as computer simulation on implants that enables hearing damaged through age, illness or an accident to be reconstructed. Along with passive prostheses with the function of “spare parts”, active prostheses are also thereby developed that strengthen the incoming acoustic signal within the ear.

How the prostheses actually behave in the case of different tones and how well the patient hears again after an operation was, however, hard to determine for a long time due to the tight conditions in the middle or inner ear and the patient’s exposure to pain. These types of measures are possible with the help of the contact-free Laser-Doppler vibrometry. It therefore makes a valuable contribution to the development of passive implants and active hearing aids that are effective and favourably priced, can be used in a minimally invasive way and offer the patient the maximum degree of comfort and security.

On the way there ITM has been cooeprating with the university clinics of Zurich, Cologne and Hanover as well as with several business partners. For several years the institute has been working with varoius types of Laser-Doppler vibrometres from Polytec, so that considerable joint competences have been able to be established.

The idea is to exchange experiences and know-how in the framework of the centre of excellence and to show future application possibilities for Laser-Doppler vibrometry in biomechanics, medicine and mechanical engineering. In addition, linking measurement and simulations plays an important role. A diverse range of questions for project, degree and doctoral work arise for the students regarding everything to do with the topic of vibration measurement technology and Laser-Doppler vibrometry.

Further information:
Prof. Peter Eberhard, Dr. Albrecht Eiber, University of Stuttgart, Institute for Technical and Numeric Mechanics, Tel. 0711/685- 66389, -66393,

Email: peter.eberhard (at) itm.uni-stuttgart.de, albrecht.eiber (at) itm.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,

Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de

More articles from Machine Engineering:

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht FOSA LabX 330 Glass – Coating Flexible Glass in a Roll-to-Roll Process
07.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>