Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Stuttgart opens Centre of Excellence for Laser-Doppler vibrometry in biomechanics

From mechanical engineering to the middle ear

A new centre of excellence for Laser-Doppler vibrometry is opening today at the University of Stuttgart, the aim of which is to make measurement techniques from mechanical engineering beneficial for biomechanics.

3D – vibration measurement on an experimental model. Photo: Universität Stuttgart/ ITM

The cooperation is supported by the Institute for Technical and Numeric Mechanics (ITM) at the University of der Stuttgart as well as Polytec from Waldbronn, the world market leader in the field of non-contact vibration measurement technology. Those with hearing impairments in particular will benefit from the research.

“Thanks to our equipment in laser measurement technology, we are creating conditions for excellent research and a sound training”, according to the Head of ITM, Prof. Peter Eberhard. Dr. Stefan König, responsible for sales in South Germany at Polytec: “Laser-Doppler vibrometry at ITM enables us to make interesting applications and profound analyses.“

Laser-Doppler vibrometry is a measurement technique that records even the smallest of movements in the nanometre range, and through this makes highly dynamic processes in particular accessible without influencing the measurement object. They are traditionally used in technical systems like machines, robots or vehicles. “Laser vibrometry is a basic methodological approach to record and to understand vibrations. It can therefore also be used with biomechanical processes, such as sound transmission through the middle ear to the inner ear“, explained Dr. Albrecht Eiber.

The deputy head of ITM has already been researching for several years with processes, such as computer simulation on implants that enables hearing damaged through age, illness or an accident to be reconstructed. Along with passive prostheses with the function of “spare parts”, active prostheses are also thereby developed that strengthen the incoming acoustic signal within the ear.

How the prostheses actually behave in the case of different tones and how well the patient hears again after an operation was, however, hard to determine for a long time due to the tight conditions in the middle or inner ear and the patient’s exposure to pain. These types of measures are possible with the help of the contact-free Laser-Doppler vibrometry. It therefore makes a valuable contribution to the development of passive implants and active hearing aids that are effective and favourably priced, can be used in a minimally invasive way and offer the patient the maximum degree of comfort and security.

On the way there ITM has been cooeprating with the university clinics of Zurich, Cologne and Hanover as well as with several business partners. For several years the institute has been working with varoius types of Laser-Doppler vibrometres from Polytec, so that considerable joint competences have been able to be established.

The idea is to exchange experiences and know-how in the framework of the centre of excellence and to show future application possibilities for Laser-Doppler vibrometry in biomechanics, medicine and mechanical engineering. In addition, linking measurement and simulations plays an important role. A diverse range of questions for project, degree and doctoral work arise for the students regarding everything to do with the topic of vibration measurement technology and Laser-Doppler vibrometry.

Further information:
Prof. Peter Eberhard, Dr. Albrecht Eiber, University of Stuttgart, Institute for Technical and Numeric Mechanics, Tel. 0711/685- 66389, -66393,

Email: peter.eberhard (at), albrecht.eiber (at)

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,

Email: andrea.mayer-grenu (at)

Andrea Mayer-Grenu | idw
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>