Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted String Actuator Imparts Robotic Hands with a Strong Grip

19.04.2010
Future robots may be evacuating people out of damaged buildings after earthquakes or helping elderly persons in the household.

Imparting robots with the grip of their human counterpart demands hands capable of carrying heavy objects as well as placing them carefully and gently.


Researchers at Saarland University and Bologna University (Professor Claudio Melchiorri) developed a twisted string actuator for robotic hands. Bologna University

Researchers at Saarland University developed a twisted string actuator for robotic hands that is capable of generating tremendous forces by means of a simple principle, while requiring little space. The catapults of the ancient Romans serve as a model for the artificial muscles.

The new miniature drive will be presented by the scientists at the Hannover Fair from April 19th to 24th . The Saarland research booth C44 is located in Hall 2.

Already the Romans used strings and tendon bundles to catapult enormous stones on their enemies. Back then the strings were also twisted about their own axis, setting free immense forces when released. The research group of Hartmut Janocha, professor of Process Automation at Saarland University, took this archetype for the modelling of robot hands, which should be able to grip powerfully yet gently.

"Humans move their hands using muscles in the forearm. That is why we were searching for a possibility to control and activate the fingers with the smallest possible components inside the forearm of the robot", said Professor Janocha, describing the challenge they faced. Using strings twisted by small, fast turning motors, the researchers can now generate high forces in a compact space.

"Extremely resilient polymer strings make it possible to hoist a load of five kilograms over 30 millimetres in less than a second, using an electric motor together with a string of 20 centimetres length", explained Professor Janocha. Each finger of the robotic hand developed by the research team around Professor Claudio Melchiorri at Bologna University, which like its human archetype is comprised of three phalanges, can be controlled delicately with the individual tendons. Compared with conventional solutions in which strings are wound around a spool, this new solution is significantly more compact. The miniature electric motors will be integrated within the fore-arm of the robot, making it even more similar to the human arm. "The miniature motors run at high speed and with a low torque of about 5 Newton-millimetres. The combination of compact motors with twisted strings can be advantageous in other applications", says Professor Janocha.

The research on robotic hands in Saarbrücken is part of the European funded project DEXMART, in which eight universities and research institutes from Germany, France, Italy and Great Britain participate. The goal of the project is to impart robots with specific properties so that they can assist persons in the household, in operating rooms or industrial settings. Starting in 2008, the European Union is investing 6.3 million Euro over four years in the research project.

For more information, contact:
Chris May
Laboratory of Process Automation (LPA)
Saarland University
Tel. +49 (0) 681 / 302-4188
Tel. +49 (0) 511 / 89 49 71 01 (telephone at exhibition booth)
c.may@lpa.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.dexmart.eu
http://www.lpa.uni-saarland.de
http://www.uni-saarland.de/pressefotos

Further reports about: Actuator Automation Grip Robotic Twisted electric motor robotic hand robotic hands

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>