Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted String Actuator Imparts Robotic Hands with a Strong Grip

19.04.2010
Future robots may be evacuating people out of damaged buildings after earthquakes or helping elderly persons in the household.

Imparting robots with the grip of their human counterpart demands hands capable of carrying heavy objects as well as placing them carefully and gently.


Researchers at Saarland University and Bologna University (Professor Claudio Melchiorri) developed a twisted string actuator for robotic hands. Bologna University

Researchers at Saarland University developed a twisted string actuator for robotic hands that is capable of generating tremendous forces by means of a simple principle, while requiring little space. The catapults of the ancient Romans serve as a model for the artificial muscles.

The new miniature drive will be presented by the scientists at the Hannover Fair from April 19th to 24th . The Saarland research booth C44 is located in Hall 2.

Already the Romans used strings and tendon bundles to catapult enormous stones on their enemies. Back then the strings were also twisted about their own axis, setting free immense forces when released. The research group of Hartmut Janocha, professor of Process Automation at Saarland University, took this archetype for the modelling of robot hands, which should be able to grip powerfully yet gently.

"Humans move their hands using muscles in the forearm. That is why we were searching for a possibility to control and activate the fingers with the smallest possible components inside the forearm of the robot", said Professor Janocha, describing the challenge they faced. Using strings twisted by small, fast turning motors, the researchers can now generate high forces in a compact space.

"Extremely resilient polymer strings make it possible to hoist a load of five kilograms over 30 millimetres in less than a second, using an electric motor together with a string of 20 centimetres length", explained Professor Janocha. Each finger of the robotic hand developed by the research team around Professor Claudio Melchiorri at Bologna University, which like its human archetype is comprised of three phalanges, can be controlled delicately with the individual tendons. Compared with conventional solutions in which strings are wound around a spool, this new solution is significantly more compact. The miniature electric motors will be integrated within the fore-arm of the robot, making it even more similar to the human arm. "The miniature motors run at high speed and with a low torque of about 5 Newton-millimetres. The combination of compact motors with twisted strings can be advantageous in other applications", says Professor Janocha.

The research on robotic hands in Saarbrücken is part of the European funded project DEXMART, in which eight universities and research institutes from Germany, France, Italy and Great Britain participate. The goal of the project is to impart robots with specific properties so that they can assist persons in the household, in operating rooms or industrial settings. Starting in 2008, the European Union is investing 6.3 million Euro over four years in the research project.

For more information, contact:
Chris May
Laboratory of Process Automation (LPA)
Saarland University
Tel. +49 (0) 681 / 302-4188
Tel. +49 (0) 511 / 89 49 71 01 (telephone at exhibition booth)
c.may@lpa.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.dexmart.eu
http://www.lpa.uni-saarland.de
http://www.uni-saarland.de/pressefotos

Further reports about: Actuator Automation Grip Robotic Twisted electric motor robotic hand robotic hands

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>