Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Torque limiting clutches for high-speed applications in test stands

Test stand applications set maximum requirements on torque limiting clutches, which quickly overstrain the standard designs available on the market.

In addition, the installation spaces available are becoming increasingly small due to the increasingly compact constructions. Mayr power transmission has therefore developed the new torque limiting clutch EAS-HSC (High-Speed-Compact) for speeds of up to 12,000 rpm.

EAS-HSC clutches transmit the torque backlash-free during operation, and allow the drive components to slow down freely on overload.

In test stand technology, torque limiting clutches must be capable of transmitting the torque backlash-free and with torsional rigidity at extremely high speeds. The only devices suitable for this purpose are residual torque-free or disengaging torque limiting clutches, which allow the stored rotational energy in coupled masses to slow down freely.

Torque limiting clutches in high-speed applications must have a high balance quality in every individual component, so that optimum running smoothness of the drive train is guaranteed in combination with the components. Therefore, the optimisation of the mass unbalance was one of the highest priorities in the technical specifications.

In addition to their extremely compact construction, a high performance density reduces the rotating masses, which has a positive effect on running smoothness and machine dynamics. The clutch is balanced in completely assembled condition to a balance quality of G 2.5 at a reference speed of 3000 rpm.

If the torque in the drive line exceeds the limit value set on the EAS-HSC, the clutch disengages via a unique disengagement mechanism. This holds it securely in disengaged position. The torque drops immediately and an installed limit switch detects the disengagement movement and switches off the drive.

The limit switch signal can also be used for further control functions. The clutch separates the input and output completely and remains in this condition until it is re-engaged by hand or using a device.

In normal operation, the torque on the EAS-HSC is transmitted using balls which engage simultaneously with the hub and drive flange grooves. Cup springs clamp the balls via a ring. The level of the spring force is proportional to the transmittable torque. This principle also remains backlash-free when the grooves wear down, as the cup springs have a falling characteristic curve. Therefore, the torque is transmitted with torsional rigidity up to the pre-set trigger value. In case of overload, the pre-tension force of the spring and the clutch trigger highly accurately.

The clutches transmit the torque backlash-free during operation, and ensure that the drive components slow down freely on overload. During the overtravel time, no engagement impacts occur which might have a negative effect on the drive line. Re-engagement takes place “synchronously” only at the disengagement position. This is frequently required if the input and output always have to have the same angular position to each other.

With its five construction sizes, the EAS-HSC provides nominal torques from 5 to 1000 Nm. Depending on the size, speeds from 6000 to 12,000 rpm are permitted.

Chr. Mayr GmbH + Co. KG, Eichenstraße 1, 87665 Mauerstetten, Dipl.-Ing. (FH) Hermann Bestle
Tel.: 08341/804-232, Fax: 08341/804-49232
E-Mail:, Web:

Hermann Bestle | Chr. Mayr GmbH + Co KG
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>