Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Torque limiting clutches for high-speed applications in test stands

17.07.2013
Test stand applications set maximum requirements on torque limiting clutches, which quickly overstrain the standard designs available on the market.

In addition, the installation spaces available are becoming increasingly small due to the increasingly compact constructions. Mayr power transmission has therefore developed the new torque limiting clutch EAS-HSC (High-Speed-Compact) for speeds of up to 12,000 rpm.


EAS-HSC clutches transmit the torque backlash-free during operation, and allow the drive components to slow down freely on overload.

In test stand technology, torque limiting clutches must be capable of transmitting the torque backlash-free and with torsional rigidity at extremely high speeds. The only devices suitable for this purpose are residual torque-free or disengaging torque limiting clutches, which allow the stored rotational energy in coupled masses to slow down freely.

Torque limiting clutches in high-speed applications must have a high balance quality in every individual component, so that optimum running smoothness of the drive train is guaranteed in combination with the components. Therefore, the optimisation of the mass unbalance was one of the highest priorities in the technical specifications.

In addition to their extremely compact construction, a high performance density reduces the rotating masses, which has a positive effect on running smoothness and machine dynamics. The clutch is balanced in completely assembled condition to a balance quality of G 2.5 at a reference speed of 3000 rpm.

If the torque in the drive line exceeds the limit value set on the EAS-HSC, the clutch disengages via a unique disengagement mechanism. This holds it securely in disengaged position. The torque drops immediately and an installed limit switch detects the disengagement movement and switches off the drive.

The limit switch signal can also be used for further control functions. The clutch separates the input and output completely and remains in this condition until it is re-engaged by hand or using a device.

In normal operation, the torque on the EAS-HSC is transmitted using balls which engage simultaneously with the hub and drive flange grooves. Cup springs clamp the balls via a ring. The level of the spring force is proportional to the transmittable torque. This principle also remains backlash-free when the grooves wear down, as the cup springs have a falling characteristic curve. Therefore, the torque is transmitted with torsional rigidity up to the pre-set trigger value. In case of overload, the pre-tension force of the spring and the clutch trigger highly accurately.

The clutches transmit the torque backlash-free during operation, and ensure that the drive components slow down freely on overload. During the overtravel time, no engagement impacts occur which might have a negative effect on the drive line. Re-engagement takes place “synchronously” only at the disengagement position. This is frequently required if the input and output always have to have the same angular position to each other.

With its five construction sizes, the EAS-HSC provides nominal torques from 5 to 1000 Nm. Depending on the size, speeds from 6000 to 12,000 rpm are permitted.

Contact:
Chr. Mayr GmbH + Co. KG, Eichenstraße 1, 87665 Mauerstetten, Dipl.-Ing. (FH) Hermann Bestle
Tel.: 08341/804-232, Fax: 08341/804-49232
E-Mail: hermann.bestle@mayr.de, Web: http://www.mayr.com

Hermann Bestle | Chr. Mayr GmbH + Co KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>