Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology to speed cleanup of nuclear contaminated sites

03.01.2011
Members of the engineering faculty at Oregon State University have invented a new type of radiation detection and measurement device that will be particularly useful for cleanup of sites with radioactive contamination, making the process faster, more accurate and less expensive.

A patent has been granted on this new type of radiation spectrometer, and the first production of devices will begin soon. The advance has also led to creation of a Corvallis-based spinoff company, Avicenna Instruments, based on the OSU research. The market for these instruments may ultimately be global, and thousands of them could be built, researchers say.

Hundreds of millions of dollars are spent on cleanup of some major sites contaminated by radioactivity, primarily from the historic production of nuclear weapons during and after World War II. These include the Hanford site in Washington, Savannah River site in South Carolina, and Oak Ridge National Laboratory in Tennessee.

“Unlike other detectors, this spectrometer is more efficient, and able to measure and quantify both gamma and beta radiation at the same time,” said David Hamby, an OSU professor of health physics. “Before this two different types of detectors and other chemical tests were needed in a time-consuming process.”

“This system will be able to provide accurate results in 15 minutes that previously might have taken half a day,” Hamby said. “That saves steps, time and money.”

The spectrometer, developed over 10 years by Hamby and Abi Farsoni, an assistant professor in the College of Engineering, can quickly tell the type and amount of radionuclides that are present in something like a soil sample – contaminants such as cesium 137 or strontium 90 - that were produced from reactor operations. And it can distinguish between gamma rays and beta particles, which is necessary to determine the level of contamination.

“Cleaning up radioactive contamination is something we can do, but the process is costly, and often the question when working in the field is how clean is clean enough,” Hamby said. “At some point the remaining level of radioactivity is not a concern. So we need the ability to do frequent and accurate testing to protect the environment while also controlling costs.”

This system should allow that, Hamby said, and may eventually be used in monitoring processes in the nuclear energy industry, or possibly medical applications in the use of radioactive tracers.

The OSU College of Engineering has contracted with Ludlum Instruments, a Sweetwater, Texas, manufacturer, to produce the first instruments, and the OSU Office of Technology Transfer is seeking a licensee for commercial development. The electronic systems for the spectrometers will be produced in Oregon by Avicenna Instruments, the researchers said.

About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

David Hamby | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>