Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Synchronous linear motor with magnet-free secondary section track

The 1FN6, a synchronous motor with magnet-free secondary section track, is a new addition to the Siemens series of linear motors.

The innovative motor concept has all the advantages of direct drives such as high force density, high dynamic response, good control features and outstanding precision. As the secondary section track no longer has a permanent magnet, the 1FN6 is very inexpensive, especially in the case of long traversing distances.

The motor is therefore primarily used for applications in handling and linked axes or in highly dynamic and highly precise feeding axes of water-jet and laser-beam cutting machines. It is therefore an alternative to classic drive solutions with mechanical transmission elements such as gear racks or ball screws, as well as being an alternative to other types of motor such as asynchronous linear or reluctance motors. It is also ideal for applications in which a magnet-free secondary section track is essential.

In many applications in the machine tool area, long traversing distances have to be traveled quickly and precisely. Due to the costs of permanent magnets or in applications where it is difficult to protect the secondary section track against dirt, previous linear motor concepts could not be used or could only be used to a limited extent. The new 1FN8 linear motor is a synchronous linear motor developed by Siemens with a magnet-free secondary section track.

The motor has all the qualities of a synchronous direct drive such as high precision, outstanding dynamic response, the absence of a need for maintenance, a high force density and low energy losses. At the same time, the fact that no permanent magnets are used means is it easy to install, inexpensive and very robust. Applications can now be equipped with linear motors, whose traversing distances are very long or are open. Applications with very large air gaps due to the design can also be implemented with the 1FN6.

In the case of machine tools, the 1FN6 is especially suitable for applications where water-jet or laser-beam cutting is used. Particularly in the case of handling and linking applications with very long traversing distances and requirements for robust components, the linear motor is an alternative to classic linear drive systems with gear racks or belts. Thanks to its modular design, the motor can be adapted to meet the special requirements of an application. For the traversing distance, any number of secondary sections can be mounted next to each other. In addition, several primary sections can be operated on a secondary section track.

The first delivery stage of the 1FN6 linear motor is designed as a self-cooling version for the power range with a maximum force of 880 N to 7920 N. Linear motors of the 1FN6 series are designed for operation with the Sinamics S120 drive system. Configuration is carried out with the Tool Sizer, as is usual for the Sinamics drive family. Due to the connectors fitted to the front, a drive is created that is ready for use within a very short time thanks to its prefabricated power and signal cables.

Volker M. Banholzer | Siemens Industry
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>