Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Shear from Siemens VAI – a New Hydraulically Operated Plate Shear for Improved Cutting Quality and Increased Cutting Speed

15.10.2008
Siemens VAI Metals Technologies has developed a new hydraulically operated rolling blade shear for cutting applications in heavy-plate rolling mills. Compared to conventional mechanical shears, “Smart Shear” is intended to improve cutting quality, increase the cutting speed, simplify maintenance and enable greater flexibility. The Smart Shear concept is suitable for use as a crop shear or a divide shear.

Due to the rising demand for high-strength types of steel and for plates with a greater thickness and width, the requirements placed on plate mill shears have increased dramatically. The shears and their components are being subjected to much greater forces. At the same time, uneven cuts or imprecisely cut edges have to be avoided. The mechanically operated shears available on the market are at the limit of their capabilities.

In the case of Smart Shear, servo-controlled hydraulic cylinders are used on both sides of the shears in order to operate the top blade. A rolling cut action is therefore possible without the gears, shafts and cranks needed for mechanical shears. The top knife and the bottom knife are mounted directly on the blade beams. This reduces the number of moving parts and thus susceptibility to wear as well as the need for maintenance. Simulations have demonstrated a considerably better control of cutting angle and blade overlap compared to mechanical shears. The servo-controlled movement of the shears ensures that the correct cutting angle is achieved for all plate thicknesses.

The blade overlap is kept practically constant over the entire width of the plate. This improves the cutting quality. Moreover, the blade overlap can easily be adapted to the optimum value for the respective thickness and width by means of the control software. In addition, the Smart Shear concept enables higher cutting speeds than mechanical shears. The cutting speed of mechanical shears cannot easily be increased because the larger torque needed for increasing the speed requires a design that, in turn, increases the inertia of the drive system.

In order to improve operational flexibility, Smart Shear is equipped with two pairs of hydraulic cylinders. Both pairs of cylinders are used at the same time for cutting high-strength or thick metal plates. When thin plates or lower-strength material has to be cut, only one pair of cylinders is used. The cutting speed can easily be adapted to the requirements in each case.

The hydraulic cylinders are operated in tension. As a result, the vertical forces are constrained within the top and bottom knife beams and the cylinders. The side frames are not subjected to the vertical forces. They only have to withstand the horizontal blade forces and thus can be much lighter.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation and building systems. Integrated hardware and software technologies combined with comprehensive industry-specific solutions enable Siemens to enhance the productivity and efficiency of its customers in industry and infrastructure. The Sector comprises six Divisions: Building Technologies, Industry Automation, Industry Solutions, Mobility, Drive Technologies and Osram. In fiscal 2007 (ended September 30), Siemens Industry generated sales of approximately EUR40 billion (pro forma, unconsolidated) with around 209,000 employees worldwide.

With the business activities of Siemens VAI Metal Technologies, (Linz, Austria), Siemens Water Technologies (Warrendale, Pa., U.S.A.), and Industry Technologies, (Erlangen, Germany), the Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities.

Using its own products, systems and process technologies, Industry Solutions develops and builds plants for end customers, commissions them and provides support during their entire life cycle.

Dr. Rainer Schulze | Siemens Industry Solutions
Further information:
http://www.siemens.com/metals
http://www.siemens.com/industry
http://www.siemens.com/industry-solutions

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>