Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple, safe and reliable: Siemens develops a new sublance for LD converters

26.03.2012
Siemens VAI Metals Technologies is offering LD (BOF) steel works operators the Simetal Sublance 2.0, a new lance system for temperature and oxygen measurement, sample-taking and bath level detection.

The system consists of a vertically mobile sublance, including a lance car and a special probe magazine. It combines a compact, inherently operationally safe drive design with a radar-based measuring system for fast, precise positioning of the lance, which can achieve measuring cycle times of less than 110 seconds. The system is simply and ruggedly constructed, resulting in higher reliability and lower maintenance costs.


Because they are physically close to the converters in the steel works, sublances are exposed to severe environmental conditions, such as high temperatures and heavy concentrations of dust in the ambient air. This makes maintaining and servicing lance systems correspondingly difficult and expensive.

The new Simetal Sublance 2.0 from Siemens is designed for installation above the converter cooling stack. Measurements and samples are taken through a port in the stack. The drive system of the sublance is designed on the same principle as that of an elevator. Two redundant steel ropes fed over non-slip traction sheaves connect the vertically mobile lance car to a counterweight. This is slightly heavier than the lance traveling device, so the device can be returned to its starting position in the event of a power outage or drive malfunction. This greatly increases operational safety. As only a low net weight has to be lifted, the drive motor can also have smaller dimensions, and the lance car can be moved more quickly and precisely than with conventional drive solutions. This facilitates measuring cycle times of just 110 seconds.

The lance car is equipped with multiple, adjustable rollers that ensure smooth motion along the guiding rails. The sublance itself is attached to the lance car by a quick coupling device. The lance, together with the water supply, is automatically coupled by means of its own dead weight. Additional screws prevent accidental unhinging. The quick coupling enables the lance to be changed quickly and easily, as well as simply rotated through 180°. The lance can also be turned by hand to compensate for any thermal distortion. A centering device is mounted at the lower end of the guiding rail to position the tip of the lance precisely, even at a high operating speed. The lance is positioned by means of a measuring encoder on the drive and a non-contact radar system. No additional position encoders are required on the rails themselves. This increases both the reliability and the safety of the system. All measuring sensors are mounted on the drive platform for easy access.

Siemens has developed a new magazine solution for handling and holding the probes. The magazine has up to five storage boxes, each of which can hold 20 probes for long-term operation. Each box indicates the precise number of probes it contains, and sends a message to the control center when this falls below a settable limit. The boxes can be refilled by hand. A probe is rotated from the horizontal storage position into the vertical position by a special guiding rail. This turns the probe with the aid of its dead weight, and does not require any additional mechanical drives. Before mounting on the lance, the probe is fixated in a vertical position by a gripper, which also removes it after the measurement has been made.

A supplementary solution for automated calibration of the measuring system is currently under development. The Simetal Sublance 2.0 can also be combined with the Siemens LiquiRob robot system.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading suppliers of plant construction and engineering in the iron and steel industry as well as in the flat rolling segment of the aluminum industry. The Business Unit offers a comprehensive product and service portfolio for metallurgical plants and equipment as well as integrated automation and environmental solutions covering the entire lifecycle of plants. For more information, visit http://www.siemens.com/metals

Reference Number: IMT201203144

Contact
Mr. Rainer Schulze
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +49 (9131) 7-44544
rainer.schulze@siemens.com

Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/metals

More articles from Machine Engineering:

nachricht Evaluating risk of hydrogen embrittlement: new simulation of cold cracks in high-strength steels
03.05.2018 | Fraunhofer-Institut für Werkstoffmechanik IWM

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>