Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short Laser Pulses for Material Deposition with Cold Spray Technology

13.04.2015

In a new EU-funded project, ultra-short laser pulses modify material surfaces so that metal powder from a cold gas jet can adhere more easily. With Cold Spray Technology, coating lightweight materials such as plastics or carbon fiber reinforced plastic (CFRP) becomes significantly simpler. The EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) unites five partners from industry and research who want to extend low-pressure cold gas spraying to new applications.

Cold Gas Spraying is an additive manufacturing process in which metal powders are accelerated to supersonic speeds to adhere to material surfaces. The material deposition process is based on the kinetic energy of the particles.


High-speed deposition of copper on aluminum segments.

Picture source: Dycomet

A thick layer (>0.5 mm) is deposited with no thermal defect in the substrate. The deposited layer can be directly machined or reworked. The main advantages of low-pressure cold gas spraying are the lack of heat input, high processing speed, and low investment cost. New material combinations are especially promising in automotive and aeronautics.

The main challenge in this technology is the adherence of the first layer on the workpiece. The aim of the EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) will improve adhesion on different substrates by using high-speed laser surface structuring with integrated ns and ps lasers with low-pressure cold gas spraying. New material combinations can then be developed for industrial use.

The deposition of metallic materials (Cu or Al) on carbon fiber and glass fiber reinforced plastic (CFRP and GFRP) substrates is being investigated, which has already created significant interest in the aeronautic and automotive industries. In addition, the new technology can be applied in novel ways in electronics manufacturing. As an example, Cold Gas Spraying may deposit a copper layer on a non-conducting housing for fanless heat removal from electronic components.

The project team is composed of French, Dutch, and German partners. Dycomet Europe (NL) brings cold gas spraying expertise, Edgewave (GER) delivers high-power short-pulsed laser technology, and Industrial Laser Systems (FR) is acting as the system integrator and coordinator of the project. Research teams from Université de Technologie de Belfort-Montbéliard (UTBM, FR) Fraunhofer-Institute for Laser Technology ILT (GER) are developing the process.
The EMLACS project (reference number 606567) has been running since June 2014 under Research for SMEs - FP7-SME-2013 and has been funded by the Research Executive Agency (REA) for 24 months.

Contact

Manuel Mendes
Industrial Laser Systems
Telephone +33 1 55950950
mmendes@industrial-laser-systems.com
21-23 rue Aristide Briand, 92170 Vanves, France
www.industrial-laser-systems.com

Dr.-Ing. Wolfgang Knapp
Head of the Coopération Laser Franco-Allemande CLFA
Telephone +33 2 2844 3711
wolfgang.knapp@ilt.fraunhofer.de
Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.emlacs.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Fraunhofer-Institut ILT Industrial Laser Lasertechnik Pulses Spray Technology cold gas fiber spraying substrates

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>