Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ROBA®-linearstop - A safety brake for dynamic linear-motion braking actions

12.08.2011
Most of the brake elements available on the market today work purely as clamping units. They are only designed to secure the axes at a standstill, and are not suitable for dynamic braking procedures. The ROBA®-linearstop, however, is a fully adequate safety brake according to the Trade Association testing requirements. It enables reliable braking of axes in motion.

The dynamic safety brakes in the ROBA®-linearstop series work according to the fail-safe principle. The braking force is provided by pressure springs and transferred backlash-free via a conical surface onto a collet. This collet clamps the brake rod continuously, without changing its position. In closed position, the brake is able to withstand loads in both directions of motion. Dynamic braking actions can be achieved from speeds with a maximum of 2 m/s.


Safety brakes of the ROBA®-linearstop series are designed for dynamic braking applications and can be mounted directly onto standard cylinders according to DIN ISO 15552.

Dynamic stops were tested according to the Trade Association testing requirements on the mayr®-Drop Test Stand. In compliance with the Trade Association requirements, the tested elements are switched a million times statically and load-free, and a million times with load assumption. At every thousandth switching, they are braked dynamically from motion. The ROBA®-linearstop brake unit achieved 30,000 dynamic brake applications in fatigue tests with a maximum load and is therefore substantially better than the Trade Association testing requirement, which only stipulates 1,000 dynamic brake applications.

ROBA®-linearstop safety brakes can be mounted directly onto standard cylinders according to DIN ISO 15552. They can also be integrated simply, quickly and without complicated adjustment into different drive constellations. In contrast to other linear braking systems, the ROBA®-linearstop does not have to travel on the carriage. Supplying the pneumatic lines is therefore simplified. The brake can be screwed to a static machine component. The cylindrical piston rod is guided through the central bore of the brake and connected to the carriage of the linear drive.

As the carriage moves, this piston rod pushes itself axially through the ROBA®-linearstop. When the brake closes, the carriage is braked dynamically and then held backlash-free and accurately positioned. The axis is secured in both directions of motion. The brake is released pneumatically at 4 to 6 bar, according to the configured braking force. An integrated sensor continuously reports the switching status of the brake. The ROBA®-linearstop brake unit is supplied in four construction sizes with nominal retention forces of

1.5 kN up to 40 kN.

Chr. Mayr GmbH + Co.KG
Eichenstraße 1, 87665 Mauerstetten
Tel. 08341/804-0, Fax 08341/804-421
E-Mail: info@mayr.de

Hermann Bestle | Chr. Mayr GmbH + Co.KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>