Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ROBA®-linearstop - A safety brake for dynamic linear-motion braking actions

Most of the brake elements available on the market today work purely as clamping units. They are only designed to secure the axes at a standstill, and are not suitable for dynamic braking procedures. The ROBA®-linearstop, however, is a fully adequate safety brake according to the Trade Association testing requirements. It enables reliable braking of axes in motion.

The dynamic safety brakes in the ROBA®-linearstop series work according to the fail-safe principle. The braking force is provided by pressure springs and transferred backlash-free via a conical surface onto a collet. This collet clamps the brake rod continuously, without changing its position. In closed position, the brake is able to withstand loads in both directions of motion. Dynamic braking actions can be achieved from speeds with a maximum of 2 m/s.

Safety brakes of the ROBA®-linearstop series are designed for dynamic braking applications and can be mounted directly onto standard cylinders according to DIN ISO 15552.

Dynamic stops were tested according to the Trade Association testing requirements on the mayr®-Drop Test Stand. In compliance with the Trade Association requirements, the tested elements are switched a million times statically and load-free, and a million times with load assumption. At every thousandth switching, they are braked dynamically from motion. The ROBA®-linearstop brake unit achieved 30,000 dynamic brake applications in fatigue tests with a maximum load and is therefore substantially better than the Trade Association testing requirement, which only stipulates 1,000 dynamic brake applications.

ROBA®-linearstop safety brakes can be mounted directly onto standard cylinders according to DIN ISO 15552. They can also be integrated simply, quickly and without complicated adjustment into different drive constellations. In contrast to other linear braking systems, the ROBA®-linearstop does not have to travel on the carriage. Supplying the pneumatic lines is therefore simplified. The brake can be screwed to a static machine component. The cylindrical piston rod is guided through the central bore of the brake and connected to the carriage of the linear drive.

As the carriage moves, this piston rod pushes itself axially through the ROBA®-linearstop. When the brake closes, the carriage is braked dynamically and then held backlash-free and accurately positioned. The axis is secured in both directions of motion. The brake is released pneumatically at 4 to 6 bar, according to the configured braking force. An integrated sensor continuously reports the switching status of the brake. The ROBA®-linearstop brake unit is supplied in four construction sizes with nominal retention forces of

1.5 kN up to 40 kN.

Chr. Mayr GmbH + Co.KG
Eichenstraße 1, 87665 Mauerstetten
Tel. 08341/804-0, Fax 08341/804-421

Hermann Bestle | Chr. Mayr GmbH + Co.KG
Further information:

More articles from Machine Engineering:

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>