Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ROBA®-linearstop - A safety brake for dynamic linear-motion braking actions

12.08.2011
Most of the brake elements available on the market today work purely as clamping units. They are only designed to secure the axes at a standstill, and are not suitable for dynamic braking procedures. The ROBA®-linearstop, however, is a fully adequate safety brake according to the Trade Association testing requirements. It enables reliable braking of axes in motion.

The dynamic safety brakes in the ROBA®-linearstop series work according to the fail-safe principle. The braking force is provided by pressure springs and transferred backlash-free via a conical surface onto a collet. This collet clamps the brake rod continuously, without changing its position. In closed position, the brake is able to withstand loads in both directions of motion. Dynamic braking actions can be achieved from speeds with a maximum of 2 m/s.


Safety brakes of the ROBA®-linearstop series are designed for dynamic braking applications and can be mounted directly onto standard cylinders according to DIN ISO 15552.

Dynamic stops were tested according to the Trade Association testing requirements on the mayr®-Drop Test Stand. In compliance with the Trade Association requirements, the tested elements are switched a million times statically and load-free, and a million times with load assumption. At every thousandth switching, they are braked dynamically from motion. The ROBA®-linearstop brake unit achieved 30,000 dynamic brake applications in fatigue tests with a maximum load and is therefore substantially better than the Trade Association testing requirement, which only stipulates 1,000 dynamic brake applications.

ROBA®-linearstop safety brakes can be mounted directly onto standard cylinders according to DIN ISO 15552. They can also be integrated simply, quickly and without complicated adjustment into different drive constellations. In contrast to other linear braking systems, the ROBA®-linearstop does not have to travel on the carriage. Supplying the pneumatic lines is therefore simplified. The brake can be screwed to a static machine component. The cylindrical piston rod is guided through the central bore of the brake and connected to the carriage of the linear drive.

As the carriage moves, this piston rod pushes itself axially through the ROBA®-linearstop. When the brake closes, the carriage is braked dynamically and then held backlash-free and accurately positioned. The axis is secured in both directions of motion. The brake is released pneumatically at 4 to 6 bar, according to the configured braking force. An integrated sensor continuously reports the switching status of the brake. The ROBA®-linearstop brake unit is supplied in four construction sizes with nominal retention forces of

1.5 kN up to 40 kN.

Chr. Mayr GmbH + Co.KG
Eichenstraße 1, 87665 Mauerstetten
Tel. 08341/804-0, Fax 08341/804-421
E-Mail: info@mayr.de

Hermann Bestle | Chr. Mayr GmbH + Co.KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht "We're hoping for up to 600 kilometers per hour"
15.06.2018 | Technische Universität München

nachricht Flow probes from the 3D printer
25.05.2018 | Technische Universität München

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>