Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise cut for sparkling jewels

09.04.2008
Rubies, emeralds and tourmalines can only sparkle with the right cut. Since early this year, a fully automatic machine has undertaken this grinding process for Paul Wild GmbH. It saves up to 30 percent of the precious material and grinds the gems with greater precision.

Not until they are given the right cut do precious stones reveal their true value. And they only fetch the highest prices if the facets are even and exact. However, the grinding process – which has hitherto been performed exclusively by hand – leaves little remaining of the valuable uncut stone: 66 to 70 percent fall to the ground as dust, while only a good 30 percent eventually sparkle in the light as a precious jewel. But which of the numerous cuts will make the most of the raw gemstone in question? Experienced lapidaries have an instinct for it.

For the first time ever, a grinding machine is challenging this collected experience: On average, it uses 15 percent more of the volume of the uncut stone. The machine has been in use with Paul Wild gem-cutters near Idar-Oberstein for three months, and has already transformed over a hundred lumps of rough stone into sparkling gems. “The machine – a CNC grinding machine with 17 axes – first maps the surface of the uncut stone,” explains Dr. Karl-Heinz Küfer, head of department at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaisers-lautern, who developed the software for controlling the machine with the help of his colleagues.

“To do this, narrow bands of light are projected fully automatically onto the uncut stone, and its geometry can be determined from their curvature. The computer takes ten minutes to determine the image of the enclosed gemstone awaiting grinding, and sends the appropriate commands to the process control unit. The 17 axes ensure that the milling head can move along any desired path and grind the facets to an accuracy within ten micrometers – the gemstones become perfectly geometrical.” For comparison, hand grinding achieves an accuracy of about 100 micrometers, or the width of a hair. Hand-polished gems appear less exact, their facets and polished edges seeming to be slightly rounded.

The fully automated system takes an average of 20 minutes to give an uncut stone its facets. The machine has to work with extreme care and therefore allows the precious dust to fall rather more slowly than a skilled lapidary who has an instinct for the correct grinding pressure. On no account must the precious stone be allowed to get too hot, as this could cause it to split.

During polishing, however, the machine works faster: Whereas the skilled worker repeatedly has to wipe the stone clean and carefully inspect it, the machine sets the polishing time automatically depending on the size of the facets and the type and weight of the gem. “With uncut gems of average quality, the system will pay off within a year or two,” Küfer estimates.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/04/ResearchNews42008Topic2.jsp

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>