Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reduced blind zone and shorter design of sensors advantageous for close-up range

10.11.2009
Industry Automation, a Siemens division, has developed a new generation of its sonar proximity switches Simatic PXS.

The new sensors of the compact series in M30 design have a reduced blind zone and are shorter than models of the previous generation. These improvements make for better detection of objects at close range and reduce the space requirements of the components. The new programming interface lets users read out status and diagnostic information in running operation without any reaction. This means you can easily adapt the parameters to the operating environment for process optimization.


The space requirement of a sonar proximity switch in a machine or plant is mainly determined by its blind zone. The switch must be installed at a location that is set back by the length of the blind zone from the detection range to ensure reliable detection of the close-up range. This so-called dead space is reduced by more than 50 percent for the latest generation of Simatic PXS sonar proximity switches – space available to reduce the size of the machine or plant. The extremely narrow sonic lobe and the improved noise suppression make for object detection even under difficult environmental conditions and will thus increase machine availability.

The reactionless transmission of sensor data in measurement operation makes for exact setting of parameters to the application. The result is an increased quality of the sensor signal. The sensors in M30 design are available for four different detection ranges up to six meters. The K1 version has one switching output; the K2 version has two. K3 is available in several versions: with one switching and one analog output, with one IO-Link channel or Atex certification for operation in Ex-Zone 2/22. Versions with rotary head or recessed converter are available for K2 and K3 sensors.

Parameter setting of the sonar proximity switches takes place either through simple setting of the potentiometer on the device itself or more conveniently with the parameter-setting tool: it provides reactionless access to detailed realtime sensor data without interruption of the measuring operation. You can, for example, visualize several echos at different intervals and quality to optimize the parameters for the application. The tool is connected via infrared adapter so that you do not interrupt existing measurement connections.

The new Simatic-PXS sonic proximity switches can detect all objects that reflect ultrasonic waves. Their application ranges from measurement of filling and stacking levels, height detection all the way to distance measurements. The sensors detect objects with widely differing characteristics, regardless of whether they are liquid, solid, powder or even transparent and if their surfaces are rough or smooth, clean or dirty, wet or dry. They are not sensitive to extraneous influences such as light or temperature and they are extremely dependable under changing or difficult environmental conditions. The sensors emit ultrasonic waves. If these are reflected off objects, the resulting echo is converted into an electrical signal and the time between the transmitted pulse and echo pulse is measured to determine the distance.

Gerhard Stauss | Siemens Industry
Further information:
http://www.siemens.com/simatic-sensors/px

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>