Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reduced blind zone and shorter design of sensors advantageous for close-up range

10.11.2009
Industry Automation, a Siemens division, has developed a new generation of its sonar proximity switches Simatic PXS.

The new sensors of the compact series in M30 design have a reduced blind zone and are shorter than models of the previous generation. These improvements make for better detection of objects at close range and reduce the space requirements of the components. The new programming interface lets users read out status and diagnostic information in running operation without any reaction. This means you can easily adapt the parameters to the operating environment for process optimization.


The space requirement of a sonar proximity switch in a machine or plant is mainly determined by its blind zone. The switch must be installed at a location that is set back by the length of the blind zone from the detection range to ensure reliable detection of the close-up range. This so-called dead space is reduced by more than 50 percent for the latest generation of Simatic PXS sonar proximity switches – space available to reduce the size of the machine or plant. The extremely narrow sonic lobe and the improved noise suppression make for object detection even under difficult environmental conditions and will thus increase machine availability.

The reactionless transmission of sensor data in measurement operation makes for exact setting of parameters to the application. The result is an increased quality of the sensor signal. The sensors in M30 design are available for four different detection ranges up to six meters. The K1 version has one switching output; the K2 version has two. K3 is available in several versions: with one switching and one analog output, with one IO-Link channel or Atex certification for operation in Ex-Zone 2/22. Versions with rotary head or recessed converter are available for K2 and K3 sensors.

Parameter setting of the sonar proximity switches takes place either through simple setting of the potentiometer on the device itself or more conveniently with the parameter-setting tool: it provides reactionless access to detailed realtime sensor data without interruption of the measuring operation. You can, for example, visualize several echos at different intervals and quality to optimize the parameters for the application. The tool is connected via infrared adapter so that you do not interrupt existing measurement connections.

The new Simatic-PXS sonic proximity switches can detect all objects that reflect ultrasonic waves. Their application ranges from measurement of filling and stacking levels, height detection all the way to distance measurements. The sensors detect objects with widely differing characteristics, regardless of whether they are liquid, solid, powder or even transparent and if their surfaces are rough or smooth, clean or dirty, wet or dry. They are not sensitive to extraneous influences such as light or temperature and they are extremely dependable under changing or difficult environmental conditions. The sensors emit ultrasonic waves. If these are reflected off objects, the resulting echo is converted into an electrical signal and the time between the transmitted pulse and echo pulse is measured to determine the distance.

Gerhard Stauss | Siemens Industry
Further information:
http://www.siemens.com/simatic-sensors/px

More articles from Machine Engineering:

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht FOSA LabX 330 Glass – Coating Flexible Glass in a Roll-to-Roll Process
07.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>