Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Piezohydraulic Actuator: A Powerful Midget

09.10.2014

Researchers at Siemens have developed a small but powerful piezo­hydraulic actuator. Although it is only about nine centimeters long, it can apply a force of more than 150 newtons - equivalent to a weight of 15 kilograms. Such actuators are used to operate valves and flaps, for example, and can also be employed in robots.

The concept combines piezomechanics with hydraulics. A voltage causes tiny deflections in a piezoelectric crystal and an internal hydraulic system combines these small movements to generate a rise of two centimeters. Purely electromagnetic actuators loose efficiency if they are very small.

Another advantage of the new actuator is its metallic enclosure, which ensures that all of the required hydraulic fluid is contained in the system so that the actuator only has to be supplied with electricity and not with fluid. Moreover, the actuator is protected against external influences such as dust, humidity, and chemicals.

Piezoelectric crystals expand in a particular direction as soon as a voltage is applied. These crystals are used to drive injection valves in combustion engines, for example. One of their advantages is their dynamic response. Due to their great stiffness, they respond with almost no lag. By contrast, a conventional hydraulic system needs to have a central pump compress the hydraulic fluid in all of the system's pipes before it can generate a mechanical motion.

The piezohydraulic actuator developed by Siemens' global research department Corporate Technology (CT) achieves a high level of stiffness because it only needs six milliliters of hydraulic fluid. The enclosed hydraulic system consists of three adjacent metallic bellows that can expand along an axis and are connected to one another by non-return valves. If the piezoelectric crystal is excited, it expands into the central chamber, where it creates pressure.

This pressure opens the valve to the adjacent chamber, which has an actuator stem attached to its front. The inflowing fluid slightly expands the bellows and the actuator stem is extended. Using a patented integration solution, the developers achieve a total rise of two centimeters:

They operate the piezoelectric crystal with a high-frequency sawtooth voltage and combine the rapid succession of small expansions to create a completely smooth motion of the actuator stem. The concept has two advantages:

If the reverse voltage waveform is applied, the pumping direction and the motion are reversed as well. In addition, the actuator maintains its extension once it has been set. By contrast, the actuators used in conventional gears to transmit power cannot withstand vibrations and other influences over the long-run.

The system is a further development of a piezohydraulic actuator that CT created for controlling the valves of large-scale combustion engines such as gas turbines. According to the developers, the new actuator might also be used for other applications such as in robots, in the operation of aircraft ailerons, and in medical and cleanroom technology.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>