Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modular basic device for extractive gas analysis permits selection of very small measuring ranges

The Siprocess GA700 series launched by the Siemens Industry Automation Division is a new extractive gas analyzer range with an innovative platform concept.

A modular basic device is used with local user interface, communication interfaces, power supply, basic electronics, and software. Various analyzer modules are integrated into the basic device depending on the measuring task.

Each of these modules consists of the actual analyzer and the sensor electronics, including the evaluation software and required interfaces. As the first in the range, the Oxymat module measures oxygen according to the paramagnetic alternating pressure principle. The Oxymat module ensures absolute linearity and allows extremely small measuring ranges to be selected in one device: 0 to 0.5 percent with a detection limit of 50 ppm, as well as 0 to 100 and 99.5 to 100 percent.

The Siprocess GA700 basic analyzer with enclosures for rack or wall mounting can accommodate two analyzer modules. Module replacement is simple and user-friendly, and can be carried out on site without having to replace the basic device. The parameters already set for the measurement are automatically transferred from the basic device to the replacement module.

The modules are temperature-controlled to permit quick and easy replacement without repeated recording of the temperature characteristic. Furthermore, they operate independently of ambient temperature variations, and thus provide highly stable measurements. The analyzer modules are suitable for ambient temperatures up to 50 degrees Celsius, have a uniform operating concept, and are equipped with a local user interface comprising display and keyboard. The high-resolution graphic display outputs the measured values in analog and digital forms. The operating software has been radically changed, with the focus on clear menu navigation and comprehensive user prompting.

For example, an installation wizard is available for initial commissioning, and provides clear and explicit instructions for guidance through the process. The software is provided in 12 languages for global use. During operation, the modules signal servicing intervals, calibration requirements, or remaining lifetime of parts subject to wear, thus providing the basis for predictive maintenance concepts.

The new Oxymat module for measuring oxygen is suitable for demanding applications where high requirements exist regarding reliability and measuring quality. This is ensured by modern electronics, simple operation, and a physical unit matched to the measuring task. Corrosive gas mixtures can also be measured thanks to the use of special materials in the gas path. The detector unit does not come into contact with the sample gas, and is therefore suitable for use in harsh atmospheres while simultaneously ensuring a long service life.

An Ultramat module for measuring infrared-active gases and a Calomat module for hydrogen and noble gases are also planned.

Extractive gas analyzers are used in process plants to continuously determine the concentrations of gases. They are used, for example, for safe monitoring of process flows, for ensuring high product quality, or for the reliable determination of emissions. Different physical or electrochemical procedures are used depending on the components to be measured.

You can find the text online on the special press event page for Achema 2012:

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation, building and lighting technologies. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit

The Siemens Industry Automation Division (Nuremberg, Germany) supports the entire value chain of its industrial customers – from product design to production and services – with an unmatched combination of automation technology, industrial control technology, and industrial software. With its software solutions, the Division can shorten the time-to-market of new products by up to 50 percent. Industry Automation comprises five Business Units: Industrial Automation Systems, Control Components and Systems Engineering, Sensors and Communications, Siemens PLM Software, and Water Technologies. For more information, visit

Reference Number: IIA2012063118e

Mr. Gerhard Stauss
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Tel: +49 (911) 895-7945

Gerhard Stauss | Siemens Industry
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>