Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Robots for the Aerospace Industry

01.12.2015

The aerospace industry is showing how it’s done: The factory of the future is clearly taking shape here. In their EU project VALERI, European researchers and industry partners have demonstrated that mobile manipulators, i.e. mobile industrial robots, are fully able to work side by side with human colleagues. The robots in this project are applying sealant to aircraft fuselages or inspecting aircraft parts, for instance.

Coordinated by the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg, the experts specifically aimed to automate manufacturing jobs that can be hazardous to health or are extremely monotonous and physically strenuous.


José Navarro from IDPSA and José Saenz from the Fraunhofer IFF examine how VALERI has applied sealant to an aircraft part.

picture: KUKA

They also want to have jobs with many steps that recur throughout the aircraft manufacturing process performed by one single mobile robot in the future. Robots will not replace skilled labor. Rather, they will simplify their work and assist them in their jobs.

Researchers in the VALERI project (Validation of Advanced, Collaborative Robotics for Industrial Applications) established the technical conditions for humans and robots to work next to each other. Taking the application of sealant to aircraft fuselages and the inspection of parts as model tasks, they demonstrated at Airbus DS facilities in Seville that protective barriers will no longer be needed in future manufacturing facilities.

Then, humans and robots will be working right next to each other, maybe even on the same part, and still act autonomously. The project partners added a second inspection sensor to the VALERI robot system to additionally demonstrate the flexibility of the system for use in other manufacturing industries, too. The experts are breaking new ground with VALERI, making their vision for human-robot collaboration and the aerospace industry reality and getting one step closer to Industry 4.0.

The industrial end-users Airbus DS and FACC, the industrial robotics manufacturer KUKA Robotics GmbH, systems integrator IDPSA, and the research partners PROFACTOR GmbH and PRODINTEC were involved in the VALERI project. The project was funded by the European Commission with € 3.6 million under FP7 “Factories of the Future”.

More Flexibility

Humans work on large parts in a stationary production cell in manufacturing. Over a period of days, several shifts of workers assemble and inspect the parts. Specialized, stationary robotic systems are not cost effective in such a manufacturing environment. That is supposed to change in the future: A mobile robot will be performing similar tasks at several workstations. This is why the VALERI system needs to be more flexible than traditional, stationary industrial robots.

Complex Challenges

The project focused on three model jobs: applying sealant along a groove, subsequently inspecting the sealant, and inspecting braided carbon parts. While the first two applications are closely related, the VALERI consortium selected a third application to demonstrate the system’s overall flexibility. The robot is able to change tools. Programming it to execute entirely new operations is done quickly and intuitively.

Individual Technologies, Highly Integrated System

At the outset of the project, KUKA modified an existing omniRob robot to have a reach suitable for the range of tasks planned. This included adding a rotatable linear axis atop the mobile platform, thus giving the robot twelve degrees of freedom and a reach comparable to that of a human. Such a hyper-redundant system necessitated coordinating all of its motions - real mobile manipulation – so that the VALERI robot could be programmed intuitively and could perform all of its tasks.

The researchers from the Fraunhofer IFF in Magdeburg developed tactile sensors and a camera-based workplace monitoring system as safety technologies for direct human-robot collaboration. The tactile sensors detect contact and the robot stops before biomechanical thresholds are reached. The researchers had determined the maximum allowable robot speeds beforehand.

These data are extremely important for the global robotics community – they will aid in the validation of collaborative robots with power and force limiting safeguards. What is more, the tactile sensors can be used for haptic interaction with the robot. User studies have confirmed that haptic interaction that essentially requires operators to give the robot a push in the direction it should move is very intuitive to use.

The workplace monitoring system consists of a time-of-flight camera combined with three stereo camera pairs. It tracks a tool’s movement and creates a virtual safeguarded zone around it. The robot stops if a human or object enters this safeguarded zone, thus preventing any collision.

The experts from IDPSA developed the tool that applies sealant and integrated it in the robot controller, thus making it possible to closely coordinate the application of sealant with the robot’s peed and orientation. Sealant is now applied along curved and flat trajectories significantly better.

The research organization Prodintec adapted and integrated a camera-based tool that localizes parts. The camera captures 3D point clouds and uses CAD matching-software to identify and localize parts. This enables VALERI to locate and work on parts, which are sometimes on rollers and not always in the same spot in the factory. The company Profactor developed and integrated two other tools, which the VALERI robot can use to inspect applied sealant and braided carbon parts.

The VALERI project has received funding by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 314774.

Weitere Informationen:

http://www.iff.fraunhofer.de/en/business-units/robotic-systems/research/robotics... for more information on robots in manufacturing
http://www.valeri-project.eu/ - for more information on the VALERI-project

Anna-Kristina Mahler | Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

More articles from Machine Engineering:

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht FOSA LabX 330 Glass – Coating Flexible Glass in a Roll-to-Roll Process
07.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>