Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Materials researchers micromanage atoms in hard metal

Drilling bits in the mining industry and cutting tools for metalworking in the manufacturing industry are often made of hard metal – a material nearly as hard as diamond.

Researchers have long tried to control the manufacturing process for the material to be able to steer in detail the hardness and other key properties to make it more durable. By combining theory and experiments, researchers at Chalmers University of Technology in Sweden have now taken a crucial step toward being able to micromanage the performance of the material, down to the level of the atom.

“The size of bore can vary, from a diameter of 10 meters for large tunnel bores down to three hundredths of a millimeter, thinner than a human hair, for applications in the electronics industry. This places great demands on the manufacturing process to attain precise properties. The results of Sven Johansson’s and Jonathan Weidow’s research are of great interest to industry, and what they have managed to do is unique,” says Göran Wahnström, professor of physics.

Hard metal is a mixture of a hard carbide phase, wolfram carbide (WC), and a tougher metal phase, cobalt (Co). It is produced by sintering, whereby fine powders of WC and Co are heated up so the cobalt melts and the material is pulled together by capillary force. The result is a solid material consisting of a hard skeleton of wolfram carbide grains surrounded by the tougher cobalt-rich cement phase.

The size of the wolfram carbide grains is key to the hardness of the hard metal. The great challenge is to be able to control the growth of these grains during the sintering process. By combining experimental and theoretical methods, the researchers now understand how they can control the structure of the material in detail, down to the level of the atom, during the production process. The work was carried out as a twin doctoral project with funding from the Swedish Research Council and the industry (Sandvik and Seco Tools) and in collaboration with a research team in Grenoble.

“Our work has focused on characterizing and understanding the interfaces in the material, on the one hand between the wolfram carbide grains, so-called granular interfaces and, on the other hand, between the wolfram carbide grain and the cementing phase, what are called phase interfaces. The theoretical part made use of quantum mechanical density-functional theory to describe and understand how the electrons in the material bind together the material,” says Göran Wahnström.

By doping the material (adding another substance in tiny portions) scientists have known that the growth of the grain can be dramatically limited. A tiny addition of vanadium can limit the growth of the grains to one tenth, from a particle size of one thousandth of a mm down to one ten-thousandth mm. But they did not know why.

In the doped materials, the research group in Grenoble found, using high-resolution electron microscopy, that an extremely thin layer, only two atom layers thick, of a cubical structure can be built on the wolfram carbide grains. At Chalmers, Jonathan Weidow used atom-probe tomography, a technology unique in Sweden, to analyze the interfaces atom by atom.

“These films can affect the growth, but the question is whether they are there during the actual sintering process when the WC particles are growing, when the experimental microscopy technology cannot be used. The theoretical prediction is that these films can also exist at the high sintering temperatures. Large grains with the composition of the film are then thermodynamically unstable, but the thin film is stabilized by strong bindings on the interface between the film and the cementing phase,” says Göran Wahnström.

Sven Johansson’s dissertation is titled A computational study of interface structures and energetics in cemented carbides and steels.

Jonathan Weidow’s dissertation is titled Effect of metal and cubic carbide additions on interface chemistry, phase composition and grain growth in WC-Co based cemented carbides

Sven Johansson, Division of Material and Surface Theory; Tel. +46 (0)31-772 3669

Jonathan Weidow, Division of Microscopy and microanalysis; Tel. +46 (0)31-772 3137

Göran Wahnström, +46 (0)31-772 3634
Hans-Olof Andrén, +46 (0)31-772 3309
Pressofficer Åsa Ekvall:Phone +46(0)31-772 4891; mail:

Åsa Ekvall | idw
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>