Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machines that Can Feel / Sensitive Machine Components with Laser Technology

27.03.2013
The LZH has used a laser structuring process to develop an innovative sensor for complex, three-dimensional tooling components.

An isolating layer and a sensor layer are coated directly onto the tooling component, and the sensor is then structured using an ultrashort pulsed laser. Since masks are not necessary, these robust, high-quality thin-film sensors can be economically produced in small and medium-sized lots.


Laser-structured strain gauges in a groove in a machine component


Laser-structured strain gauges in a groove in a machine component (close-up)

Scientists use a trick to make the slightest strain on parts of a tooling machine visible. They can measure stress on the fly, or recognize a dull cutting tool at an early stage. The Laser Zentrum Hannover e.V. (LZH) will show how this stress gauge works at this year’s Hannover Messe, from April 8th to 12th.

How can information on the condition of a tooling machine or process forces and vibrations be monitored during the manufacturing process, and even more important, how can this information be used for process optimization? This information can be measured using sensor modules with gentelligent (genetic + intelligent) components, which help a machine “feel”. This is the goal of a special research area “653” under the leadership of the Institute for Production Engineering and Machine Tools, University of Hannover, together with the LZH.

However, it is not simple to build such sensors. Tooling machines are usually very rigid, so that processing stresses cause only minimal deformation or distortion. In order to be able to measure these deformations precisely, the engineers used a “trick”. They placed strain gauges in the bottom of grooves in the machine components, where stresses are highest, and where stress gauges can make the most precise measurements.

However, up to now, it was not possible to place strain gauges in the bottom of grooves, as they are very difficult to access, and structures are usually complicated. Photolithographic sensors can only be used for flat surfaces, and strain gauges on foils, which are fixed to the machine using adhesives, are not suitable for the rough conditions in manufacturing processes.

The group “Laser-Micromachining” at the LZH used a laser structuring process to develop an innovative sensor for complex, three-dimensional tooling components. An isolating layer and a sensor layer are coated directly onto the tooling component, and the sensor is then structured using an ultrashort pulsed laser, with lateral resolutions from 10 to 100 µm. A laser scanner is used to ensure a fast structuring process. Since masks are not necessary, these high-quality thin-film sensors can be economically produced in small and medium-sized lots.

First prototypes of these laser structured sensors have already been integrated in the Z-axis slides of a tooling machine. Strain tests have shown that the sensors can measure even the smallest stresses, down to 0.001%.
Visitors to the LZH Stand at the Hannover Messe (Hall 17, Stand E 67) can test the function of these laser structured strain gauges themselves.
The work took place within the framework of the SFB project “Gentelligent Components in Life Cycle”, and have been financed by the German Research Foundation (DFG) since July, 2005.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>