Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locating natural resources in the deep sea – easily and eco-friendly

25.04.2016

Locating natural resources at the sea ground so far involves high costs. To reduce these, the Laser Development and Material and Processes departments at the LZH, together with eight European partners, work on developing a laser-based, autonomous system until 2020. This system shall detect soil samples, such as manganese nodules, and analyze the material composition of the specimen directly on the deep sea ground.

With this reliable and cost-efficient system, mineral and raw material contents of large areas shall be mapped in the future. Besides reduced costs, this technology allows for less impact to the environment.


Massive sulfides

photo: GEOMAR


Passive q-switched prototype of a laser head developed by the LZH within the course of the technology preparation program for the LIBS of the ESA ExoMARS mission

photo: LZH

Combining AUV and LIBS

Two technologies are combined to achieve this: an autonomous underwater vehicle (AUV) for the 3D mapping of the sea ground is equipped with a laser-based element-analyzing capability. This unit makes it possible to analyze soil samples by laser-induced plasma spectroscopy (LIBS). Here, a compact, autonomous system is needed that is, in addition, robust enough to withstand the pressure in the deep sea.

Knowledge from aerospace for the deep sea

Both the Laser Development and the Materials and Processes Department of the LZH are using knowledge from the ExoMARS project to develop the system. For the space mission, a small, ultralight laser system was developed that shall enable LIBS-based analyses on the Mars. For the use in the deep sea, the weight of the laser system is less important. However, here too a very compact system with a high pulse energy is demanded.

The system is being jointly developed by scientists from the LZH and neoLASE GmbH, an LZH spin-off company. The employees of this company contribute their expertise for the electronics and control of the laser system. The other partners add the necessary competencies in the fields of oceanography, 3D cartography and biogeochemistry.

The „ROBotic sUbSea exploration Technologies - ROBUST“ project is coordinated by The Welding Institute (TWI Ltd.) in Great Britain. Besides the LZH and neoLASE GmbH, the following partners are involved: CGG Veritas Consultants Ltd. (France), ALS Marine Consultants Ltd. (Cyprus), GEOMAR Helmholtz Centre for Ocean Research (Germany), Graal Tech S.r.l. (Italy), Università Degli Studi Di Genova (Italy), Coronis Computing S.L. (Spain).

At the Hannover Messe, the LZH is presenting current research results on underwater laser cutting. This process too is being developed by the scientists of the Machines and Controls Group in the Materials and Processes Department of the LZH. Visit us at the Pavilion of the State of Lower Saxony in hall 2, stand A08!

Dr. nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>