Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser beam repairs engine components - major market potential for aircraft construction and mechanical engineering

As part of a long-term collaboration with the Original Equipment Manufacturer (OEM) Rolls-Royce Deutschland (RRD) in Oberursel, the Fraunhofer Institute for Laser Technology ILT, working together with the Chair for Laser Technology LLT at the RWTH Aachen, has developed an innovative and cost-efficient repair technique for engine components.

Ensuring flight safety is regarded as the number one priority in civil aviation. One of the key strategies to achieve this is by maintaining reliable engine performance, which is why engines undergo regular, thorough inspections in which they are completely disassembled and comprehensively serviced.

The components of the engine that are made from titanium and nickel-based alloys (superalloys) are subject to heavy wear due to extreme fluctuations in pressure and temperature. In addition, they are frequently damaged by foreign bodies that are sucked into the engine during take-off and landing. Until recently, it was not a feasible option to carry out the kind of special repairs that involved having to replace sections of worn materials.

Components that could not be repaired therefore had to be replaced in their entirety. As well as being extremely expensive, these replacement com-ponents were often difficult to get hold of due to material availability problems in the global market.

Researchers from the Fraunhofer ILT and the LLT have now succeeded in surmounting these difficulties by using a laser cladding technique that enables these defective engine com-ponents to be repaired. "What is so innovative is the fact that we can take oxidation-sensitive titanium materials and components that have a tendency to distort and weld them in a precise and reproducible manner without any distortion," explains Dr. Andres Gasser, project manager at the Fraunhofer ILT. "A local gas atmosphere is used to prevent the molten weld pool generated in the cladding process from reacting with the surrounding atmosphere. With this method we can avoid the need to use a costly processing gas chamber." The Aachen-based research institute is able to take on responsibility for handling the entire project, ranging from process development and certification to installation of a system for laser cladding at the site of the industrial project partner.

Using this new technique, a local weld pool is generated by the laser beam on the surface of the component. A specially designed powder feed nozzle then introduces a metal powder composed of a similar material. The resulting layer possesses similar mechanical properties to those of the component. "One of the keys to this technique is a newly developed system of powder feed nozzles, which increases the efficiency of powder use while preventing oxidation of the layers," explains Gerhard Backes, project manager for nozzle development at the LLT. Thanks to the special nozzles' modular configuration and compact design, the range of possible applications is virtually unlimited. A further advantage of laser cladding in comparison to conventional welding is the fact that the low thermal load helps to minimize component distortion while ensuring that the weld is free from defects and smoothly contoured to the shape of the component.

In parallel to developing the process, the Fraunhofer ILT supplied a modified laser cladding machine produced by the company TRUMPF, which has now been up and running at Rolls-Royce Deutschland for around one year, where it has been producing superb results. Martin Spallek, responsible for component repair at RRD, sums up the developments so far: "By deploying this repair technique we have managed to reduce the time required for general overhauls of the engines by approximately one third while simultaneously cutting costs. That has made a huge contribution towards boosting our competitive advantage."

The innovation cluster "Integrative production technology for energy-efficient turbomachinery - TurPro" set up by the Fraunhofer-Gesellschaft is further enhancing this repair technique for turbomachinery components. This will mean that the technology can also be applied to land-based turbines, opening up new potential for general types of engine technologies and - over the long term - for the entire field of mechanical engineering. An impressive way of making a lasting contribution towards securing Germany's status as a high-wage location.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr.-Ing. Andres Gasser
Surface Engineering Department
Fraunhofer Institute for Laser Technology ILT
Phone +49 241 8906-209
Dipl.-Ing. Gerhard Backes
Chair for Laser Technology at the RWTH Aachen
Phone +49 241 8906-410
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
Your contact at TRUMPF
Jürgen Metzger
Sales of laser cladding systems
TRUMPF Laser- und Systemtechnik GmbH
Johann-Maus-Straße 2
71254 Ditzingen
Tel. +49 7156 303-36194
Fax. +49 7156 303-30879

Axel Bauer | Fraunhofer Gesellschaft
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>