Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser beam repairs engine components - major market potential for aircraft construction and mechanical engineering

01.07.2009
As part of a long-term collaboration with the Original Equipment Manufacturer (OEM) Rolls-Royce Deutschland (RRD) in Oberursel, the Fraunhofer Institute for Laser Technology ILT, working together with the Chair for Laser Technology LLT at the RWTH Aachen, has developed an innovative and cost-efficient repair technique for engine components.

Ensuring flight safety is regarded as the number one priority in civil aviation. One of the key strategies to achieve this is by maintaining reliable engine performance, which is why engines undergo regular, thorough inspections in which they are completely disassembled and comprehensively serviced.

The components of the engine that are made from titanium and nickel-based alloys (superalloys) are subject to heavy wear due to extreme fluctuations in pressure and temperature. In addition, they are frequently damaged by foreign bodies that are sucked into the engine during take-off and landing. Until recently, it was not a feasible option to carry out the kind of special repairs that involved having to replace sections of worn materials.

Components that could not be repaired therefore had to be replaced in their entirety. As well as being extremely expensive, these replacement com-ponents were often difficult to get hold of due to material availability problems in the global market.

Researchers from the Fraunhofer ILT and the LLT have now succeeded in surmounting these difficulties by using a laser cladding technique that enables these defective engine com-ponents to be repaired. "What is so innovative is the fact that we can take oxidation-sensitive titanium materials and components that have a tendency to distort and weld them in a precise and reproducible manner without any distortion," explains Dr. Andres Gasser, project manager at the Fraunhofer ILT. "A local gas atmosphere is used to prevent the molten weld pool generated in the cladding process from reacting with the surrounding atmosphere. With this method we can avoid the need to use a costly processing gas chamber." The Aachen-based research institute is able to take on responsibility for handling the entire project, ranging from process development and certification to installation of a system for laser cladding at the site of the industrial project partner.

Using this new technique, a local weld pool is generated by the laser beam on the surface of the component. A specially designed powder feed nozzle then introduces a metal powder composed of a similar material. The resulting layer possesses similar mechanical properties to those of the component. "One of the keys to this technique is a newly developed system of powder feed nozzles, which increases the efficiency of powder use while preventing oxidation of the layers," explains Gerhard Backes, project manager for nozzle development at the LLT. Thanks to the special nozzles' modular configuration and compact design, the range of possible applications is virtually unlimited. A further advantage of laser cladding in comparison to conventional welding is the fact that the low thermal load helps to minimize component distortion while ensuring that the weld is free from defects and smoothly contoured to the shape of the component.

In parallel to developing the process, the Fraunhofer ILT supplied a modified laser cladding machine produced by the company TRUMPF, which has now been up and running at Rolls-Royce Deutschland for around one year, where it has been producing superb results. Martin Spallek, responsible for component repair at RRD, sums up the developments so far: "By deploying this repair technique we have managed to reduce the time required for general overhauls of the engines by approximately one third while simultaneously cutting costs. That has made a huge contribution towards boosting our competitive advantage."

The innovation cluster "Integrative production technology for energy-efficient turbomachinery - TurPro" set up by the Fraunhofer-Gesellschaft is further enhancing this repair technique for turbomachinery components. This will mean that the technology can also be applied to land-based turbines, opening up new potential for general types of engine technologies and - over the long term - for the entire field of mechanical engineering. An impressive way of making a lasting contribution towards securing Germany's status as a high-wage location.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr.-Ing. Andres Gasser
Surface Engineering Department
Fraunhofer Institute for Laser Technology ILT
Phone +49 241 8906-209
andres.gasser@ilt.fraunhofer.de
Dipl.-Ing. Gerhard Backes
Chair for Laser Technology at the RWTH Aachen
Phone +49 241 8906-410
gerhard.backes@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
http://www.ilt.fraunhofer.de
Your contact at TRUMPF
Jürgen Metzger
Sales of laser cladding systems
TRUMPF Laser- und Systemtechnik GmbH
Johann-Maus-Straße 2
71254 Ditzingen
Deutschland
Tel. +49 7156 303-36194
Fax. +49 7156 303-30879
juergen.metzger@de.trumpf.com

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.trumpf-laser.com
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>