Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser beam repairs engine components - major market potential for aircraft construction and mechanical engineering

01.07.2009
As part of a long-term collaboration with the Original Equipment Manufacturer (OEM) Rolls-Royce Deutschland (RRD) in Oberursel, the Fraunhofer Institute for Laser Technology ILT, working together with the Chair for Laser Technology LLT at the RWTH Aachen, has developed an innovative and cost-efficient repair technique for engine components.

Ensuring flight safety is regarded as the number one priority in civil aviation. One of the key strategies to achieve this is by maintaining reliable engine performance, which is why engines undergo regular, thorough inspections in which they are completely disassembled and comprehensively serviced.

The components of the engine that are made from titanium and nickel-based alloys (superalloys) are subject to heavy wear due to extreme fluctuations in pressure and temperature. In addition, they are frequently damaged by foreign bodies that are sucked into the engine during take-off and landing. Until recently, it was not a feasible option to carry out the kind of special repairs that involved having to replace sections of worn materials.

Components that could not be repaired therefore had to be replaced in their entirety. As well as being extremely expensive, these replacement com-ponents were often difficult to get hold of due to material availability problems in the global market.

Researchers from the Fraunhofer ILT and the LLT have now succeeded in surmounting these difficulties by using a laser cladding technique that enables these defective engine com-ponents to be repaired. "What is so innovative is the fact that we can take oxidation-sensitive titanium materials and components that have a tendency to distort and weld them in a precise and reproducible manner without any distortion," explains Dr. Andres Gasser, project manager at the Fraunhofer ILT. "A local gas atmosphere is used to prevent the molten weld pool generated in the cladding process from reacting with the surrounding atmosphere. With this method we can avoid the need to use a costly processing gas chamber." The Aachen-based research institute is able to take on responsibility for handling the entire project, ranging from process development and certification to installation of a system for laser cladding at the site of the industrial project partner.

Using this new technique, a local weld pool is generated by the laser beam on the surface of the component. A specially designed powder feed nozzle then introduces a metal powder composed of a similar material. The resulting layer possesses similar mechanical properties to those of the component. "One of the keys to this technique is a newly developed system of powder feed nozzles, which increases the efficiency of powder use while preventing oxidation of the layers," explains Gerhard Backes, project manager for nozzle development at the LLT. Thanks to the special nozzles' modular configuration and compact design, the range of possible applications is virtually unlimited. A further advantage of laser cladding in comparison to conventional welding is the fact that the low thermal load helps to minimize component distortion while ensuring that the weld is free from defects and smoothly contoured to the shape of the component.

In parallel to developing the process, the Fraunhofer ILT supplied a modified laser cladding machine produced by the company TRUMPF, which has now been up and running at Rolls-Royce Deutschland for around one year, where it has been producing superb results. Martin Spallek, responsible for component repair at RRD, sums up the developments so far: "By deploying this repair technique we have managed to reduce the time required for general overhauls of the engines by approximately one third while simultaneously cutting costs. That has made a huge contribution towards boosting our competitive advantage."

The innovation cluster "Integrative production technology for energy-efficient turbomachinery - TurPro" set up by the Fraunhofer-Gesellschaft is further enhancing this repair technique for turbomachinery components. This will mean that the technology can also be applied to land-based turbines, opening up new potential for general types of engine technologies and - over the long term - for the entire field of mechanical engineering. An impressive way of making a lasting contribution towards securing Germany's status as a high-wage location.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr.-Ing. Andres Gasser
Surface Engineering Department
Fraunhofer Institute for Laser Technology ILT
Phone +49 241 8906-209
andres.gasser@ilt.fraunhofer.de
Dipl.-Ing. Gerhard Backes
Chair for Laser Technology at the RWTH Aachen
Phone +49 241 8906-410
gerhard.backes@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
http://www.ilt.fraunhofer.de
Your contact at TRUMPF
Jürgen Metzger
Sales of laser cladding systems
TRUMPF Laser- und Systemtechnik GmbH
Johann-Maus-Straße 2
71254 Ditzingen
Deutschland
Tel. +49 7156 303-36194
Fax. +49 7156 303-30879
juergen.metzger@de.trumpf.com

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.trumpf-laser.com
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>