Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kick-off of European ROS-Industrial consortium at Fraunhofer IPA

04.07.2014

The ROS-Industrial initiative is intended to harness the potential of the "Robot Operating System" (ROS) in future also for industrial applications.

Under the leadership of Fraunhofer IPA, the kick-off of the European ROS-Industrial consortium as well as the second international ROS-Industrial conference took place in Stuttgart at the end of June 2014. Experts from industry and research presented the key developments, applications, components and trends around the subject of ROS-Industrial.


Participants at the kick-off with head of the European ROS-Industrial consortium Ulrich Reiser, Fraunhofer IPA (right). source: Fraunhofer IPA

The ROS-Industrial initiative was set up two years ago with the goal of adapting ROS for industrial applications. Fraunhofer IPA, which is heading this initiative in Europe, hosted the kick-off of the ROS-Industrial consortium as well as the second international ROS-Industrial conference at the end of June 2014.

Automation technology has to date been strongly characterized by proprietary interfaces and, therefore, by strong ties to robot and control manufacturers. The ROS-Industrial vendor-neutral open-source software platform makes it possible for robot-based automation solutions to be developed faster and more efficiently than before. Reusable modules offer significant potential savings, especially for system integrators.

Transfer from research to industry: advantages of ROS-Industrial

ROS has long been an ideal internal development tool within the research community. It offers a host of advantages: it is simple to use and offers users with no training in software development, robotics or mechatronics an easier entry into complex robot applications. "ROS is flexible and scalable: whether in the hobby segment or for large industrial applications – ROS is versatile in use, also with several robots," explains Dirk Thomas from the Open Source Robotics Foundation.

"However, end users and customers were increasingly asking us questions about certain problems that we were unable to solve using the existing components and applications. So we developed ROS-Industrial as an open, flexible framework for industrial applications," says Clay Flannigan from the Texas-based Southwest Research Institute (SWRI). ROS is being further developed and improved to meet additional non-functional requirements from industry, such as robustness, reliability and safety.

Thanks to standardized interfaces and high-grade software components, ROS-Industrial reduces the integration effort for robot-based solutions. Model-based IT tools are available for the selection, configuration and integration of ROS-Industrial components. "The purpose of the ROS-Industrial consortium is to channel the requirements of industry into the ROS developer community to allow the transfer of high-performance software components from research to industry.

In collaboration with the developer community, the aim is to implement a technical roadmap for bringing these software components into line with industrial quality and safety standards," says Ulrich Reiser, group leader at Fraunhofer IPA and head of the European ROS-Industrial consortium. It is also planned to use ROS to develop concrete implementations for previously unsolved automation problems of the consortium members. "The ROS-Industrial consortium also sees its role as a central point of contact for needs-oriented support as well as a source of appropriate training for using ROS-Industrial," says Reiser.

Contact:
Dr.-Ing. Ulrich Reiser, phone +49 711-970-1330, ulrich.reiser@ipa.fraunhofer.de

Editor:
Dipl.-Journ. Laura Pizzolante, M.A., phone +49 711 970-1108, laura.pizzolante@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>