Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kick-off of European ROS-Industrial consortium at Fraunhofer IPA

04.07.2014

The ROS-Industrial initiative is intended to harness the potential of the "Robot Operating System" (ROS) in future also for industrial applications.

Under the leadership of Fraunhofer IPA, the kick-off of the European ROS-Industrial consortium as well as the second international ROS-Industrial conference took place in Stuttgart at the end of June 2014. Experts from industry and research presented the key developments, applications, components and trends around the subject of ROS-Industrial.


Participants at the kick-off with head of the European ROS-Industrial consortium Ulrich Reiser, Fraunhofer IPA (right). source: Fraunhofer IPA

The ROS-Industrial initiative was set up two years ago with the goal of adapting ROS for industrial applications. Fraunhofer IPA, which is heading this initiative in Europe, hosted the kick-off of the ROS-Industrial consortium as well as the second international ROS-Industrial conference at the end of June 2014.

Automation technology has to date been strongly characterized by proprietary interfaces and, therefore, by strong ties to robot and control manufacturers. The ROS-Industrial vendor-neutral open-source software platform makes it possible for robot-based automation solutions to be developed faster and more efficiently than before. Reusable modules offer significant potential savings, especially for system integrators.

Transfer from research to industry: advantages of ROS-Industrial

ROS has long been an ideal internal development tool within the research community. It offers a host of advantages: it is simple to use and offers users with no training in software development, robotics or mechatronics an easier entry into complex robot applications. "ROS is flexible and scalable: whether in the hobby segment or for large industrial applications – ROS is versatile in use, also with several robots," explains Dirk Thomas from the Open Source Robotics Foundation.

"However, end users and customers were increasingly asking us questions about certain problems that we were unable to solve using the existing components and applications. So we developed ROS-Industrial as an open, flexible framework for industrial applications," says Clay Flannigan from the Texas-based Southwest Research Institute (SWRI). ROS is being further developed and improved to meet additional non-functional requirements from industry, such as robustness, reliability and safety.

Thanks to standardized interfaces and high-grade software components, ROS-Industrial reduces the integration effort for robot-based solutions. Model-based IT tools are available for the selection, configuration and integration of ROS-Industrial components. "The purpose of the ROS-Industrial consortium is to channel the requirements of industry into the ROS developer community to allow the transfer of high-performance software components from research to industry.

In collaboration with the developer community, the aim is to implement a technical roadmap for bringing these software components into line with industrial quality and safety standards," says Ulrich Reiser, group leader at Fraunhofer IPA and head of the European ROS-Industrial consortium. It is also planned to use ROS to develop concrete implementations for previously unsolved automation problems of the consortium members. "The ROS-Industrial consortium also sees its role as a central point of contact for needs-oriented support as well as a source of appropriate training for using ROS-Industrial," says Reiser.

Contact:
Dr.-Ing. Ulrich Reiser, phone +49 711-970-1330, ulrich.reiser@ipa.fraunhofer.de

Editor:
Dipl.-Journ. Laura Pizzolante, M.A., phone +49 711 970-1108, laura.pizzolante@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

More articles from Machine Engineering:

nachricht Locating natural resources in the deep sea – easily and eco-friendly
25.04.2016 | Laser Zentrum Hannover e.V.

nachricht Aachen Center for Additive Manufacturing
05.04.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>