Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New invention regulates nerve cells electronically

21.05.2010
A major step toward being able to regulate nerve cells externally with the help of electronics has been taken by researchers at Linköping University and the Karolinska Institute in Sweden. The breakthrough is based on an ion transistor of plastic that can transport ions and charged biomolecules and thereby address and regulate cells.

The invention, which opens new avenues for controlling chemical signals, is being published in the coming issue of the highly ranked scientific journal PNAS. The authors are Klas Tybrandt and Magnus Berggren of Linköping University, who developed the invention, and Karin Larsson and Agneta Richter-Dahlfors at the Karolinska Institute, who have used it in experiments with cultivated nerve cells.

The four scientists work at the OBOE Research Center, which is dedicated to the study and regulation of processes in living cells and tissue through the use of organic electronics.

Previously use has been made of nano-canals and nano-pores to actively control the concentration and transport of ions. But such components are difficult to produce and moreover function poorly when the salt content is high, which is a precondition in interaction with biological systems.

"To get around these problems, we exploited the similarity between ion-selective membranes - plastics that only conduct ions of one charge - and doped semiconductors, such as silicon. It was previously known that it is possible to produce diodes from such membranes. We took it a step further by joining two ion diodes into a transistor," says Klas Tybrandt, a doctoral candidate in organic electronics.

When an ion transistor was connected to cultivated nerve cells, it could be used to control the supply of the signal substance acetylcholin locally to the cells. The successful result demonstrates both that the component functions together with biological systems and that even tiny charged biomolecules can be transported without difficulty.

"Since the ion transistor is made of plastic, it can be integrated with other components we are developing. This means we can make use of inexpensive printing processes on flexible materials. We believe ion transistors will play a major role in various applications, such as the controlled delivery of drugs, lab-on-a-chip and sensors," says Magnus Berggren, Önnesjö professor of organic electronics.

Article: Ion bipolar junction transistors by Klas Tybrandt, Karin C. Larsson, Agneta Richter-Dahlfors, and Magnus Berggren, PNAS Ahead of print May 17 2010.

Contact: Klas Tybrandt phone: +46 (0)11-363334, mobile: +46 (0)70-4997772, klaty@itn.liu.se and Magnus Berggren phone: +46 (0)11-363637, mobile: +46 (0)709-783430, magbe@itn.liu.se

Pressofficer Åke Hjelm; åka.hjelm@liu.se; +46-13281 395

Åke Hjelm | idw
Further information:
http://www.oboe.nu/
http://www.pnas.org

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>