Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High Inertia Servomotors

27.08.2009
Siemens Drive Technologies is supplementing its 1FK7 range of servomotors with a new High Inertia version. The higher intrinsic inertia makes the control response of the 1FK7-HI motor extremely robust, so that it is particularly suitable for use in applications involving high and variable load inertia.

At this year's EMO machine tool fair in Milan, Siemens Drive Technologies is showcasing its new High Inertia version of the 1FK7 servomotor for the first time. The motors are used on the feed axes and auxiliary axes of machine tools.


Siemens Drive Technologies is supplementing its 1FK7 range of servomotors with a new High Inertia version. The higher intrinsic inertia makes the control response of the 1FK7-HI motor extremely robust, so that it is particularly suitable for use in applications involving high and variable
load inertia.

The new 1FK7-HI High Inertia servomotor is characterized by its higher intrinsic moment of inertia. This makes the control response of the motors extremely robust and therefore especially suitable for applications with high and variable load inertia. Drive systems featuring the Sinumerik machine tool control system and motors from the 1FK7 series achieve very high contour precision without the need for time-consuming adaptation of the controller to the machine.

The self-cooled 1FK7-HI servomotors have been designed to be extremely resistant to vibrations and shocks and are available with torques of 3 Nm to 20 Nm. Like all motors of this design, they have an electronic nameplate and the version with the DRIVE-CLIQ serial drive bus is perfectly matched to the Sinamics S120 drive system. The SIZER tool is used for adapting and dimensioning the motors to match the respective application.

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry achieved in fiscal 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

The Siemens Drive Technologies Division (Nuremberg, Germany) is the world's leading supplier of products and services for production machinery and machine tools. Drive Technologies offers integrated technologies that cover the entire drive train with electrical and mechanical components. This includes standard products but also encompasses industry-specific control and drive solutions for metal forming, printing and electronic manufacturing as well as solutions for glass, wood, plastic, ceramic, textile and packaging equipment and crane systems. The services provided by the Division include mechatronics support in addition to online services for web-based fault management and preventive maintenance. With around 39,900 employees worldwide Siemens Drive Technologies achieved in fiscal 2008 total sales of EUR8.9 billion.

Volker M. Banholzer | Siemens Industry
Further information:
http://www.siemens.com/motors
http://www.siemens.com/automation/presse
http://www.siemens.com/industry

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>