Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green power – femtosecond laser system achieves record power

18.05.2011
The first ever laser to generate an average power of 280 W at 515 nm wavelength with perfect beam quality is now ready to operate at the touch of a button.

In the KORONA cooperation project, research scientists from the Fraunhofer Institute for Laser Technology ILT in Aachen installed a femtosecond laser at the Max Planck Institute of Quantum Optics MPQ in Garching. The turn-key laser is based on a Yb:INNOSLAB amplifier with frequency doubling. No other laser system has ever offered more output with diffraction-limited beam quality in the visible spectral range.


Femtosecond laser system with 280 W at 515 nm installed at the MPQ in Garching. Fraunhofer Institute for Laser Technology ILT, Aachen

Ultrashort laser pulses are an established tool in science and industry. In many areas, the range of applications can be expanded by scaling them up to high average output power. In recent years, beam source development has seen great progress on this front. Average output power of several hundred W with diffraction-limited beam quality have been demonstrated using Ytterbium-doped laser media at 1 µm wavelength in fiber, INNOSLAB and thin-disk geometry. The Fraunhofer ILT scientists hold the record with their Yb:INNOSLAB amplifier, generating an output power of 1.1 kW.

These beam sources must be reliable and easy to operate if they are to be used widely in science and industry. The scientists from Fraunhofer ILT have installed a laser system at the MPQ which delivers an average power of 280 W at 515 nm wavelength and an almost diffraction-limited beam quality of M²

Ultra-short-pulse lasers have manifold applications in materials processing. It is widely recognized that they offer higher-precision ablation than lasers with longer pulses. The femtosecond laser can process materials such as glass which are otherwise transparent for light with the laser wavelength. This ability is based on the process of multiphoton absorption which occurs at high peak intensities. Frequency conversion from the infrared to the green spectral range doubles the photon energy. As a result, fewer photons are needed for absorption, making it more effective.

Another application of green laser radiation is the processing of copper and other materials which absorb radiation particularly well in this spectral range. Scaling up the average power permits a higher throughput and renders industrial use economically viable, as the costs per watt are significantly reduced. The aim of the KORONA cooperation project between the Max-Planck-Gesellschaft and the Fraunhofer-Gesellschaft is to produce coherent radiation with wavelengths in the extreme ultraviolet region below 100 nm. This wavelength range can be opened up by generating high harmonics of femtosecond radiation. Scaling up the average power creates the potential for new applications in this wavelength range. What’s more, INNOSLAB lasers are commercially available. The company EdgeWave GmbH, a spin-off from Fraunhofer ILT, has been marketing pulsed solid-state lasers based on the INNOSLAB platform for scientific and industrial use for about ten years. The company Amphos GmbH, another Fraunhofer ILT spin-off, develops and sells Yb:INNOSLAB lasers in the power range from 100 W to 1000 W.

The Yb:INNOSLAB amplifier will be presented at LASER World of Photonics in Munich from May 23 to 26, 2011, on the joint Fraunhofer booth (Hall C2, Booth 330). Dipl.-Ing. Hans-Dieter Hoffmann will also give a talk about the Yb:INNOSLAB amplifier in the Photonics Forum at the trade show.

Session: Solid state lasers – novel developments

May 24, 2011, 14:00 h to 16:30 h
Photonics Forum, Hall B2, Booth 421
16:20 h: “High Power Ultrafast Laser with Average Power up to kW Range”, Dipl.-Ing. Hans-Dieter Hoffmann
Contacts
If you have any questions our experts will be pleased to assist:
Fraunhofer Institute for Laser Technology ILT
Dr. rer. nat. Peter Rußbüldt
Ultrafast Lasers
Phone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de
Dipl.-Ing. Hans-Dieter Hoffmann
Lasers and Optics
Phone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstr. 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
Max Planck Institute of Quantum Optics MPQ
Prof. Dr. Ferenc Krausz
Phone + 49 89 32905-602
Fax + 49 89 32905-649
ferenc.krausz@mpq.mpg.de
Max Planck Institute of Quantum Optics MPQ
Hans-Kopfermann-Str. 1
85748 Garching
Phone + 49 89 3 29 05-0
Fax + 49 89 3 29 05- 200

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de
http://www.mpq.mpg.de

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>