Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green power – femtosecond laser system achieves record power

18.05.2011
The first ever laser to generate an average power of 280 W at 515 nm wavelength with perfect beam quality is now ready to operate at the touch of a button.

In the KORONA cooperation project, research scientists from the Fraunhofer Institute for Laser Technology ILT in Aachen installed a femtosecond laser at the Max Planck Institute of Quantum Optics MPQ in Garching. The turn-key laser is based on a Yb:INNOSLAB amplifier with frequency doubling. No other laser system has ever offered more output with diffraction-limited beam quality in the visible spectral range.


Femtosecond laser system with 280 W at 515 nm installed at the MPQ in Garching. Fraunhofer Institute for Laser Technology ILT, Aachen

Ultrashort laser pulses are an established tool in science and industry. In many areas, the range of applications can be expanded by scaling them up to high average output power. In recent years, beam source development has seen great progress on this front. Average output power of several hundred W with diffraction-limited beam quality have been demonstrated using Ytterbium-doped laser media at 1 µm wavelength in fiber, INNOSLAB and thin-disk geometry. The Fraunhofer ILT scientists hold the record with their Yb:INNOSLAB amplifier, generating an output power of 1.1 kW.

These beam sources must be reliable and easy to operate if they are to be used widely in science and industry. The scientists from Fraunhofer ILT have installed a laser system at the MPQ which delivers an average power of 280 W at 515 nm wavelength and an almost diffraction-limited beam quality of M²

Ultra-short-pulse lasers have manifold applications in materials processing. It is widely recognized that they offer higher-precision ablation than lasers with longer pulses. The femtosecond laser can process materials such as glass which are otherwise transparent for light with the laser wavelength. This ability is based on the process of multiphoton absorption which occurs at high peak intensities. Frequency conversion from the infrared to the green spectral range doubles the photon energy. As a result, fewer photons are needed for absorption, making it more effective.

Another application of green laser radiation is the processing of copper and other materials which absorb radiation particularly well in this spectral range. Scaling up the average power permits a higher throughput and renders industrial use economically viable, as the costs per watt are significantly reduced. The aim of the KORONA cooperation project between the Max-Planck-Gesellschaft and the Fraunhofer-Gesellschaft is to produce coherent radiation with wavelengths in the extreme ultraviolet region below 100 nm. This wavelength range can be opened up by generating high harmonics of femtosecond radiation. Scaling up the average power creates the potential for new applications in this wavelength range. What’s more, INNOSLAB lasers are commercially available. The company EdgeWave GmbH, a spin-off from Fraunhofer ILT, has been marketing pulsed solid-state lasers based on the INNOSLAB platform for scientific and industrial use for about ten years. The company Amphos GmbH, another Fraunhofer ILT spin-off, develops and sells Yb:INNOSLAB lasers in the power range from 100 W to 1000 W.

The Yb:INNOSLAB amplifier will be presented at LASER World of Photonics in Munich from May 23 to 26, 2011, on the joint Fraunhofer booth (Hall C2, Booth 330). Dipl.-Ing. Hans-Dieter Hoffmann will also give a talk about the Yb:INNOSLAB amplifier in the Photonics Forum at the trade show.

Session: Solid state lasers – novel developments

May 24, 2011, 14:00 h to 16:30 h
Photonics Forum, Hall B2, Booth 421
16:20 h: “High Power Ultrafast Laser with Average Power up to kW Range”, Dipl.-Ing. Hans-Dieter Hoffmann
Contacts
If you have any questions our experts will be pleased to assist:
Fraunhofer Institute for Laser Technology ILT
Dr. rer. nat. Peter Rußbüldt
Ultrafast Lasers
Phone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de
Dipl.-Ing. Hans-Dieter Hoffmann
Lasers and Optics
Phone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstr. 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
Max Planck Institute of Quantum Optics MPQ
Prof. Dr. Ferenc Krausz
Phone + 49 89 32905-602
Fax + 49 89 32905-649
ferenc.krausz@mpq.mpg.de
Max Planck Institute of Quantum Optics MPQ
Hans-Kopfermann-Str. 1
85748 Garching
Phone + 49 89 3 29 05-0
Fax + 49 89 3 29 05- 200

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de
http://www.mpq.mpg.de

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>