Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using less gas and oil to get where you’re going

08.10.2012
A quick pit-stop at the gas station is enough to put a good dent in your wallet. New technology is set to lower the high cost of filling up your car, by enabling combustion engines to consume two to three percent less gas and signifi cantly less oil, while eliminating a step in engine production.

An engine without oil will not survive for very long. Pistons need plenty of lubricant in order to be able to move within the cylindrical sleeves in the engine block. Two things are known to raise the resultant level of friction. The first is attributed to distortion of the cylindrical bore hole when the cylinder head is attached, which is known as static distortion. The second occurs when the engine is running and temperatures warp the bore hole.


The honing tool adjusts its shape to match the piston bore holes. © Fraunhofer IWU

The extent of this thermal distortion depends on prevailing engine temperatures and the specific engine model. In reality, the piston does not follow a perfectly smooth up and down motion, but instead touches at points within the bore hole. This results in the engine requiring a great deal more oil as well as more gas. Automakers are already able to compensate static distortion.

During the final machining stage, honing, technicians mount a honing liner to the engine which simulates the cylinder head that will later be mounted. Only then the work on the bore hole is completed. Thermal distortion, on the other hand, presents difficulties since it has not been possible to compensate for this effect until now.

Saving two to three percent of fuel

This problem has now been solved by researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in collaboration with a car manufacturer and a machine tool producer. “Our technology makes it possible to compensate for both static and thermal distortion. This can lead to a fuel saving of two to three percent in combustion engines, and remove one step in their production,” says IWU head of department André Bucht.

This clever technology is based on a tool that can adapt its own shape. Researchers start by working out how an engine block is likely to become distorted: they determine the level of static distortion by unscrewing the cylinder head and measuring the extent to which the bore hole has been warped. They then simulate thermal distortion that occurs in each engine series, using an operating temperature of 90 degrees Celsius as their reference. The honing tool adjusts its shape based on these calculations, thereby altering the profile of the bore hole so that motions of the piston are perfectly smooth later on when the engine is running, preventing excessive friction.

Researchers have integrated small Piezo actuators into the tool which alter its shape and expand the diameter as required. “This is how we can incorporate any ‘imperfections’ in the otherwise perfectly round shape of the finished bore hole,” says Bucht.

A prototype of the tool already exists. The researchers have put it to use to prove that they can achieve the surface accuracy required without slowing down production – there being no more than 20 to 30 seconds for the assembly of each engine. Research is currently being performed on the test rig in collaboration with auto manufacturers. This is where an engine produced using the tool is put through its paces. Researchers are examining to what extent piston friction and fuel consumption are reduced, and how the lifespan of the engine might be affected in comparison with engines manufactured using conventional tools . The tests are scheduled to be completed by the end of the year. Researchers then plan to design the tool and the production process so that they can be adopted by manufacturers.

André Bucht | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/october/using-less-gas-and-oil-to-get-where-youre-going.html

More articles from Machine Engineering:

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>