Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using less gas and oil to get where you’re going

08.10.2012
A quick pit-stop at the gas station is enough to put a good dent in your wallet. New technology is set to lower the high cost of filling up your car, by enabling combustion engines to consume two to three percent less gas and signifi cantly less oil, while eliminating a step in engine production.

An engine without oil will not survive for very long. Pistons need plenty of lubricant in order to be able to move within the cylindrical sleeves in the engine block. Two things are known to raise the resultant level of friction. The first is attributed to distortion of the cylindrical bore hole when the cylinder head is attached, which is known as static distortion. The second occurs when the engine is running and temperatures warp the bore hole.


The honing tool adjusts its shape to match the piston bore holes. © Fraunhofer IWU

The extent of this thermal distortion depends on prevailing engine temperatures and the specific engine model. In reality, the piston does not follow a perfectly smooth up and down motion, but instead touches at points within the bore hole. This results in the engine requiring a great deal more oil as well as more gas. Automakers are already able to compensate static distortion.

During the final machining stage, honing, technicians mount a honing liner to the engine which simulates the cylinder head that will later be mounted. Only then the work on the bore hole is completed. Thermal distortion, on the other hand, presents difficulties since it has not been possible to compensate for this effect until now.

Saving two to three percent of fuel

This problem has now been solved by researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in collaboration with a car manufacturer and a machine tool producer. “Our technology makes it possible to compensate for both static and thermal distortion. This can lead to a fuel saving of two to three percent in combustion engines, and remove one step in their production,” says IWU head of department André Bucht.

This clever technology is based on a tool that can adapt its own shape. Researchers start by working out how an engine block is likely to become distorted: they determine the level of static distortion by unscrewing the cylinder head and measuring the extent to which the bore hole has been warped. They then simulate thermal distortion that occurs in each engine series, using an operating temperature of 90 degrees Celsius as their reference. The honing tool adjusts its shape based on these calculations, thereby altering the profile of the bore hole so that motions of the piston are perfectly smooth later on when the engine is running, preventing excessive friction.

Researchers have integrated small Piezo actuators into the tool which alter its shape and expand the diameter as required. “This is how we can incorporate any ‘imperfections’ in the otherwise perfectly round shape of the finished bore hole,” says Bucht.

A prototype of the tool already exists. The researchers have put it to use to prove that they can achieve the surface accuracy required without slowing down production – there being no more than 20 to 30 seconds for the assembly of each engine. Research is currently being performed on the test rig in collaboration with auto manufacturers. This is where an engine produced using the tool is put through its paces. Researchers are examining to what extent piston friction and fuel consumption are reduced, and how the lifespan of the engine might be affected in comparison with engines manufactured using conventional tools . The tests are scheduled to be completed by the end of the year. Researchers then plan to design the tool and the production process so that they can be adopted by manufacturers.

André Bucht | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/october/using-less-gas-and-oil-to-get-where-youre-going.html

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>