Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Future Trends in Mechanical Engineering

Mechanical engineers over the next two decades will be called upon to develop technologies that foster a cleaner, healthier, safer and sustainable global environment.

According to the ASME report, 2028 Vision for Mechanical Engineering, mechanical engineers will need to collaborate with partners worldwide in order to apply innovative solutions and best practices to improve quality of life for all people.

“Mechanical engineers can be at the forefront of developing new technology for environmental remediation, farming and food production, housing, transportation, safety, security, healthcare and water resources,” says the report, which is based on the proceedings of The Global Summit on the Future of Mechanical Engineering, held April 16-18, 2008, Washington, D.C. The summit, hosted by ASME at the U.S. National Academy of Engineering, convened more than 120 engineering and science leaders from 19 countries for the purpose of defining the elements of a shared vision that will keep the profession at the forefront of grand challenges and great contributions over the next 20 years.

Among the challenges, sustainable development, says the ASME report, will be a shared vision in the worldwide technical community, involving collaboration tools that allow “mechanical engineers to tap into the collective wisdom of an organization or network of stakeholders.”

Collaboration also will facilitate the development of innovations in nanotechnology, biotechnology, and large-scale systems. According to the report, nanotechnology and biotechnology will dominate technological development in the next 20 years and will be incorporated into all aspects of technology that affect lives on a daily basis. “Nano-bio will provide the building blocks that future engineers will use to solve pressing problems in diverse fields including medicine, energy, water management, aeronautics, agriculture and environmental management.”

Other topics examined at the summit and discussed in the report include intellectual property, engineering education and lifelong learning, diversity, virtual design environments, and home-based fabrication.

“Engineers will be able to act as independent operators interacting with colleagues around the world,” the report says. “Engineers can design at home with advanced CAD systems or in collaboration with their global colleagues in virtual worlds. They will be able to use home-based fabrication technology to test many of their designs.”

The report said “As mechanical engineering looks to 2028, leaders will value people with diverse expertise and experience. They will bring this global profession together to keep the promise of technology serving people. They will inspire men and women everywhere to believe that grand challenges are a rally cry for a profession that is ready for the adventure of making the difficult doable.”

The full report, 2028 Vision for Mechanical Engineering, is available online at

Founded in 1880 as the American Society of Mechanical Engineers, ASME is a not-for-profit professional organization promoting the art, science and practice of mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and standards that enhance public safety, and provides lifelong learning and technical exchange opportunities benefiting the engineering and technology community.

John Varrasi | Newswise Science News
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>