Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineer Looks to Dragonflies, Bats for Flight Lessons

Ever since the Wright brothers, engineers have been working to develop bigger and better flying machines that maximize lift while minimizing drag.

There has always been a need to efficiently carry more people and more cargo. And so the science and engineering of getting large aircraft off the ground is very well understood.

But what about flight at a small scale? Say the scale of a dragonfly, a bird or a bat?

Hui Hu, an Iowa State University associate professor of aerospace engineering, said there hasn’t been a need to understand the airflow, the eddies and the spinning vortices created by flapping wings and so there haven’t been many engineering studies of small-scale flight. But that’s changing.

The U.S. Air Force, for example, is interested in insect-sized nano-air vehicles or bird-sized micro-air vehicles. The vehicles could fly microphones, cameras, sensors, transmitters and even tiny weapons right through a terrorist’s doorway.

So how do you design a little flier that’s fast and agile as a house fly?

Hu says a good place to start is nature itself.

And so for a few years he’s been using wind tunnel tests and imaging technologies to learn why dragonflies and bats are such effective fliers. How, for example, do flapping frequency, flight speed and wing angle affect the lift and thrust of a flapping wing?

Hu’s studies of bio-inspired aerodynamic designs began in 2008 when he spent the summer on a faculty fellowship at the Air Force Research Laboratory at Eglin Air Force Base in Florida. Over the years he’s published papers describing aerodynamic performance of different kinds of flapping wings.

A study based on the dragonfly, for example, found the uneven, sawtooth surface of the insect’s wing performed better than a smooth airfoil in the slow-speed, high-drag conditions of small-scale flight. Using particle image velocimetry – an imaging technique that uses lasers and cameras to measure and record flows – Hu found the corrugated wing created tiny air cushions that kept oncoming airflow attached to the wing’s surface. That stable airflow helped boost performance in the challenging flight conditions. By describing the underlying physics of dragonfly flight, Hu and Jeffery Murphy, a former Iowa State graduate student, won a 2009 Best Paper Award in applied aerodynamics from the American Institute of Aeronautics and Astronautics.

Another study of bat-like wings found the built-in flexibility of membrane-covered wings helped decrease drag and improve flight performance.

And what about building tiny flying machines that use flapping wings? Can engineers come up with a reliable way to make that work?

Hu has been looking into that, too.

He’s using piezoelectrics, materials that bend when subject to an electric current, to create flapping movements. That way flapping depends on feeding current to a material, rather than relying on a motor, gears and other moving parts.

Hu has also used his wind tunnel and imaging tests to study how pairs of flapping wings work together – just like they do on a dragonfly. He learned wings flapping out of sync (one wing up while the second is down) created more thrust. And tandem wings working side by side, rather than top to bottom, maximize thrust and lift.

Hu said these kinds of physics and aerodynamics lessons – and many more – need to be learned before engineers can design effective nano- and micro-scale vehicles.

And so he’s getting students immersed in the studies.

Hu has won a $150,000, three-year National Science Foundation grant that sends up to 12 Iowa State students to China’s Shanghai Jiao Tong University for eight weeks of intensive summer research. The students work at the university’s J.C. Wu Aerodynamics Research Center to study bio-inspired aerodynamics and engineering problems.

“We’re just now learning what makes a dragonfly work,” Hu said. “There was no need to understand flight at these small scales. But now the Defense Advanced Research Projects Agency and the Air Force say there is a need and so there’s an effort to work on it. We’re figuring out many, many interesting things we didn’t know before.”

Hui Hu, Aerospace Engineering, 515-294-0094,
Mike Krapfl, News Service, 515-294-4917,

Mike Krapfl | Newswise
Further information:

More articles from Machine Engineering:

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>