Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer Looks to Dragonflies, Bats for Flight Lessons

17.12.2012
Ever since the Wright brothers, engineers have been working to develop bigger and better flying machines that maximize lift while minimizing drag.

There has always been a need to efficiently carry more people and more cargo. And so the science and engineering of getting large aircraft off the ground is very well understood.

But what about flight at a small scale? Say the scale of a dragonfly, a bird or a bat?

Hui Hu, an Iowa State University associate professor of aerospace engineering, said there hasn’t been a need to understand the airflow, the eddies and the spinning vortices created by flapping wings and so there haven’t been many engineering studies of small-scale flight. But that’s changing.

The U.S. Air Force, for example, is interested in insect-sized nano-air vehicles or bird-sized micro-air vehicles. The vehicles could fly microphones, cameras, sensors, transmitters and even tiny weapons right through a terrorist’s doorway.

So how do you design a little flier that’s fast and agile as a house fly?

Hu says a good place to start is nature itself.

And so for a few years he’s been using wind tunnel tests and imaging technologies to learn why dragonflies and bats are such effective fliers. How, for example, do flapping frequency, flight speed and wing angle affect the lift and thrust of a flapping wing?

Hu’s studies of bio-inspired aerodynamic designs began in 2008 when he spent the summer on a faculty fellowship at the Air Force Research Laboratory at Eglin Air Force Base in Florida. Over the years he’s published papers describing aerodynamic performance of different kinds of flapping wings.

A study based on the dragonfly, for example, found the uneven, sawtooth surface of the insect’s wing performed better than a smooth airfoil in the slow-speed, high-drag conditions of small-scale flight. Using particle image velocimetry – an imaging technique that uses lasers and cameras to measure and record flows – Hu found the corrugated wing created tiny air cushions that kept oncoming airflow attached to the wing’s surface. That stable airflow helped boost performance in the challenging flight conditions. By describing the underlying physics of dragonfly flight, Hu and Jeffery Murphy, a former Iowa State graduate student, won a 2009 Best Paper Award in applied aerodynamics from the American Institute of Aeronautics and Astronautics.

Another study of bat-like wings found the built-in flexibility of membrane-covered wings helped decrease drag and improve flight performance.

And what about building tiny flying machines that use flapping wings? Can engineers come up with a reliable way to make that work?

Hu has been looking into that, too.

He’s using piezoelectrics, materials that bend when subject to an electric current, to create flapping movements. That way flapping depends on feeding current to a material, rather than relying on a motor, gears and other moving parts.

Hu has also used his wind tunnel and imaging tests to study how pairs of flapping wings work together – just like they do on a dragonfly. He learned wings flapping out of sync (one wing up while the second is down) created more thrust. And tandem wings working side by side, rather than top to bottom, maximize thrust and lift.

Hu said these kinds of physics and aerodynamics lessons – and many more – need to be learned before engineers can design effective nano- and micro-scale vehicles.

And so he’s getting students immersed in the studies.

Hu has won a $150,000, three-year National Science Foundation grant that sends up to 12 Iowa State students to China’s Shanghai Jiao Tong University for eight weeks of intensive summer research. The students work at the university’s J.C. Wu Aerodynamics Research Center to study bio-inspired aerodynamics and engineering problems.

“We’re just now learning what makes a dragonfly work,” Hu said. “There was no need to understand flight at these small scales. But now the Defense Advanced Research Projects Agency and the Air Force say there is a need and so there’s an effort to work on it. We’re figuring out many, many interesting things we didn’t know before.”

Hui Hu, Aerospace Engineering, 515-294-0094, huhui@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise
Further information:
http://www.iastate.edu

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>