Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy management for machine tools

09.09.2009
At the EMO trade fair for machine tools being held in Milan from October 5 through 10, Siemens Drive Technologies will be exhibiting solutions for the energy efficient automation of machine tools.

The spectrum ranges from component innovations with improved effectiveness, right up to energy efficient optimization of machines early on in the engineering phase using simulation tools. Energy efficient machine tools help lower operating costs for users and thereby increase productivity.

Investments in new machinery and equipment must make financial sense for the future. At the same time, it must be possible to operate machines efficiently and adapt them flexibly to meet new product requirements. This is what users are looking for in new machines. A central component of efficient machine operation is end-to-end management of energy requirements and usage.

Innovative automation solutions for machine tools offer users low lifecycle costs through intelligent energy management, minimized total cost of ownership and thereby increased productivity. As such, energy efficient automation solutions contribute to making new machines and equipment a sound investment for the future. An investment in energy efficient automation and drive technology pays for itself within a short time and then continues to have a positive effect on production with reduced unit costs.

At this year’s EMO in Milan, Siemens will be presenting solutions for energy management in machine tools, starting with intelligent supply via the motor with improved efficiency, and ranging right up to complete, energy efficient machine optimization. Simulation tools allow machines to be optimized for energy efficiency early on in the engineering phase. With the Mechatronic Support service package from Siemens, a machine’s combination of mechanical systems and drive technology can be dynamically analyzed and improved. This also includes consumption-based optimization of the moving mass. By using an end-to-end CAD/CAM/CNC chain, product manufacturing can be designed with energy efficiency in mind right from the workpiece design phase.

The Sinumerik control effects savings while machines are running through its control-side energy management user interface. This includes the use of intelligent control algorithms and control software to optimize acceleration or jerk limitation. The efficient control of auxiliary processes, such as cooling or tool changes, as well as the requirements-based operation of auxiliary drives for machine-based logistics tasks can generate significant energy savings. Depending on the application, up to 60% of the energy used can be saved, for example by reducing the dynamics of tool changes or only activating chip conveyors when needed.

The use of energy efficient components, such as motors or converters, also saves energy costs.

With the Sinamics range, users have access to a portfolio of drives which ensures optimum reactive power compensation in the power supply through Intelligent Infeed and is capable of feeding braking energy back into the circuit. When using intelligent supply technologies, it is often also possible to significantly reduce the connected loads and conductor cross-sections, which in turn saves costs early on when designing a machine.

Siemens Drive Technologies will be exhibiting solutions for the energy efficient automation of machine tools at the EMO trade fair. The spectrum ranges from component innovations with improved effectiveness, right up to energy efficient optimization of machines early on in the engineering phase using simulation tools. Energy efficient machine tools help lower operating costs for users and thereby increase productivity.

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry achieved in fiscal 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

www.siemens.com/industry

The Siemens Drive Technologies Division (Nuremberg, Germany) is the world's leading supplier of products and services for production machinery and machine tools. Drive Technologies offers integrated technologies that cover the entire drive train with electrical and mechanical components. This includes standard products but also encompasses industry-specific control and drive solutions for metal forming, printing and electronic manufacturing as well as solutions for glass, wood, plastic, ceramic, textile and packaging equipment and crane systems. The services provided by the Division include mechatronics support in addition to online services for web-based fault management and preventive maintenance. With around 39,900 employees worldwide Siemens Drive Technologies achieved in fiscal 2008 total sales of EUR8.9 billion.

Volker M. Banholzer | Siemens Industry
Further information:
http://www.siemens.de/sinumerik
http://www.siemens.com/ad-picture/2017
http://www.siemens.com/automation/press

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>