Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy management for machine tools

09.09.2009
At the EMO trade fair for machine tools being held in Milan from October 5 through 10, Siemens Drive Technologies will be exhibiting solutions for the energy efficient automation of machine tools.

The spectrum ranges from component innovations with improved effectiveness, right up to energy efficient optimization of machines early on in the engineering phase using simulation tools. Energy efficient machine tools help lower operating costs for users and thereby increase productivity.

Investments in new machinery and equipment must make financial sense for the future. At the same time, it must be possible to operate machines efficiently and adapt them flexibly to meet new product requirements. This is what users are looking for in new machines. A central component of efficient machine operation is end-to-end management of energy requirements and usage.

Innovative automation solutions for machine tools offer users low lifecycle costs through intelligent energy management, minimized total cost of ownership and thereby increased productivity. As such, energy efficient automation solutions contribute to making new machines and equipment a sound investment for the future. An investment in energy efficient automation and drive technology pays for itself within a short time and then continues to have a positive effect on production with reduced unit costs.

At this year’s EMO in Milan, Siemens will be presenting solutions for energy management in machine tools, starting with intelligent supply via the motor with improved efficiency, and ranging right up to complete, energy efficient machine optimization. Simulation tools allow machines to be optimized for energy efficiency early on in the engineering phase. With the Mechatronic Support service package from Siemens, a machine’s combination of mechanical systems and drive technology can be dynamically analyzed and improved. This also includes consumption-based optimization of the moving mass. By using an end-to-end CAD/CAM/CNC chain, product manufacturing can be designed with energy efficiency in mind right from the workpiece design phase.

The Sinumerik control effects savings while machines are running through its control-side energy management user interface. This includes the use of intelligent control algorithms and control software to optimize acceleration or jerk limitation. The efficient control of auxiliary processes, such as cooling or tool changes, as well as the requirements-based operation of auxiliary drives for machine-based logistics tasks can generate significant energy savings. Depending on the application, up to 60% of the energy used can be saved, for example by reducing the dynamics of tool changes or only activating chip conveyors when needed.

The use of energy efficient components, such as motors or converters, also saves energy costs.

With the Sinamics range, users have access to a portfolio of drives which ensures optimum reactive power compensation in the power supply through Intelligent Infeed and is capable of feeding braking energy back into the circuit. When using intelligent supply technologies, it is often also possible to significantly reduce the connected loads and conductor cross-sections, which in turn saves costs early on when designing a machine.

Siemens Drive Technologies will be exhibiting solutions for the energy efficient automation of machine tools at the EMO trade fair. The spectrum ranges from component innovations with improved effectiveness, right up to energy efficient optimization of machines early on in the engineering phase using simulation tools. Energy efficient machine tools help lower operating costs for users and thereby increase productivity.

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide Siemens Industry achieved in fiscal 2008 a profit of EUR3.86 billion with revenues totaling EUR38 billion.

www.siemens.com/industry

The Siemens Drive Technologies Division (Nuremberg, Germany) is the world's leading supplier of products and services for production machinery and machine tools. Drive Technologies offers integrated technologies that cover the entire drive train with electrical and mechanical components. This includes standard products but also encompasses industry-specific control and drive solutions for metal forming, printing and electronic manufacturing as well as solutions for glass, wood, plastic, ceramic, textile and packaging equipment and crane systems. The services provided by the Division include mechatronics support in addition to online services for web-based fault management and preventive maintenance. With around 39,900 employees worldwide Siemens Drive Technologies achieved in fiscal 2008 total sales of EUR8.9 billion.

Volker M. Banholzer | Siemens Industry
Further information:
http://www.siemens.de/sinumerik
http://www.siemens.com/ad-picture/2017
http://www.siemens.com/automation/press

More articles from Machine Engineering:

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht FOSA LabX 330 Glass – Coating Flexible Glass in a Roll-to-Roll Process
07.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>