Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building lightweight trains

01.03.2012
The less trains weigh, the more economical they are to run.

A new material capable of withstanding even extreme stresses has now been developed. It is suitable for a variety of applications, not least diesel engine housings on trains – and it makes these components over 35 percent lighter than their steel and aluminum counterparts.


Diese Dieselmotoreinhausung für Züge ist aus einem leichten Polyurethan-basierenden Material gefertigt und dennoch extrem belastbar. © Fraunhofer ICT

In their efforts to render cars and trains more economical, manufacturers are trying to find lighter materials to replace those currently used. But there is a problem: Lighter materials tend not to be as tough as steel or aluminum, so they cannot simply be used in place of these metals. Rather, it is a question of manufacturers deciding which components can really afford to have weight shaved off and how to integrate them into the overall systems.

Working together with Bombardier GmbH, KraussMaffei Kunststofftechnik GmbH, Bayer MaterialScience AG, DECS GmbH, the DLR’s Institute for Vehicle Concepts, the University of Stuttgart and the Karlsruhe Institute for Technology, researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal have now developed a polyurethane-based sandwich material that is extremely resilient. “To demonstrate the material, we manufactured a component that is subject to significant stresses and which has to fulfill a number of requirements – the diesel engine housing for a train,” says Jan Kuppinger, a scientist at the ICT.

This housing is located beneath the passenger compartment, i.e. between the car and the tracks. Not only does it shield the engine against flying stones and protect the environment from any oil that might escape, but in the event of a fire, it also stops the flames from spreading, thus meeting the flame retardant and fire safety standards for railway vehicles. Kuppinger adds: “By using this new material, we can reduce the component’s weight by over 35 percent – and cut costs by 30 percent.”

The researchers opted for a sandwich construction to ensure component stability: Glass fiber reinforced polyurethane layers form the outer facings, while the core is made of paper honeycomb. Polyurethane is a bulk plastic combining two substances. Since it can be adapted to fulfill various requirements, it is referred to as a ‘customizable material’. In foamed form it is soft, and can be used for example as a material for mattresses; in compact form it is strong and hard. The researchers began by incorporating various additives into their polyurethane, altering it in such a way as to ensure it would meet fire safety standards. Then, the partners optimized the standard manufacturing process, fiber spraying, by developing a mixing chamber which allows even more complex structures to be produced in any required size. The diesel engine housing they made is approximately 4.5 meters long and more than 2 meters wide. “This is the first time it has proved possible to use this process to manufacture such a large and complex component that also satisfies the structural requirements,” states Kuppinger.

Previously, one problem encountered with fiber spraying was that it was impossible to determine the precise thickness of the polyurethane top layers. But now the researchers have found a way to do this, using computer tomography to inspect the manufactured layers and then applying a specially-adapted evaluation routine to establish their exact thickness. This information helps to simulate the strength of the component, as well as its ability to withstand stresses.

The scientists produced their diesel engine housing demonstrator as part of the PURtrain project, which is funded by the German Federal Ministry of Education and Research (BMBF). The demonstrator passed its first strength test – in which the scientists placed it in a test rig and then applied forces to it at various locations, measuring the extent to which it deformed – with flying colors. In the next stage, the researchers want to trial the component in a proper field test. If that, too, proves successful, it will then be possible to use the material to make roof segments, side flaps and wind deflectors for the automobile and commercial vehicle industry, and to ramp up the manufacturing process to produce medium volumes of between 250 and 30,000 units.

Jan Kuppinger | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/march/building-lightweight-trains.html

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>