Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated finishing for tool making processes - Robots remove milling traces from forming tools

08.11.2011
The Fraunhofer Institute for Production Technology IPT has developed an automated manufacturing system for the manufacture of forming tools for use in the automotive industry with which to cost-effectively smooth over and brush-polish tools with reproducible quality.

During the EuroMold 2011 tool and die making trade fair, the Fraunhofer IPT will be presenting this robot-based processing plant at the joint Fraunhofer booth C66 in Hall 11.


Linear grinding of a milled workpiece by a robot
Foto: Fraunhofer IPT

Transferring manual dexterity to a robot

The Fraunhofer IPT’s automated plant uses a lineal grinding motion to remove the milling traces that arises when manufacturing forming tools and molds. The manufacturing unit on display at the trade fair consists of a conventional industrial robot and a pneumatic smoothing tool in which the processing movements and the forces acting on the workpiece are introduced and controlled via air pressure. The processing path is programmed using the so-called "CAx-Framework" software especially developed by the Fraunhofer IPT.

Without the right tool holder or process parameters for the robot to reproduce the manual dexterity and the experience of a human operator, it was virtually impossible to automate the smoothing and brush polishing processes on freeform mold surfaces. As part of the "Green Carbody Technologies Innovation Alliance" (InnoCaT), the engineers in Aachen therefore performed scientific investigations to find the right processing methods and tools for different materials and geometries. A comparison of the results of an optical component measurement with the original design data then provided the basis for developing the optimum processing strategy for automated finishing operations.

The plan is to continue developing the system in order to fully automate the processing of free form tools both with robots as well as in milling machines.

The "Green Carbody Technologies Innovation Alliance" is an association of over 60 companies and scientific institutes that aims to make automotive manufacturing more energy and resource efficient. As part of this alliance, the Fraunhofer IPT develops new tool and mold manufacturing systems together with its industrial partners in order to reduce the resource consumption and manufacturing costs involved in component production.

Contact
Dipl.-Ing. Dennis Andrecht
Fraunhofer Institute for
Production Technology IPT
Steinbachstr. 17
52074 Aachen
Germany
Telephone +49 241 8904-718
Fax +49 241 8904-6718
dennis.andrecht@ipt.fraunhofer.de

Susanne Krause | Fraunhofer-Institut
Further information:
http://www.ipt.fraunhofer.de

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>