Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Application flexibility with guided wave radar

15.01.2014
- New product family of Sitrans LG radar level transmitter measures using guided waves

- Four basic versions and wide-ranging configuration options cover a particularly broad application spectrum in all process industries

-Also suitable for use in hygienic applications and in harsh environments

With its new Sitrans LG series, Siemens is offering a flexible portfolio of guided wave radar transmitters suitable for virtually any type of industrial application.


Sitrans LG radar level transmitter measures

The modular design of the four basic versions Sitrans LG240, Sitrans LG250, Sitrans LG260 and Sitrans LG270, with numerous configuration options, allows for level measurement in the oil and gas, chemical, pharmaceutical as well as food and beverage industries.

The modular radar transmitter covers a broad application spectrum for the measurement of liquids and interfaces, from aggressive materials to hygienic conditions and complies with SIL2 safety standard.

Sitrans LG240 was specifically designed for hygienic applications in the pharmaceutical or food and beverage industries and has the required EHEDG, FDA and 3A certificates. The Sitrans LG250 is ideal for the wide range of liquid level measurement such as those in water treatment applications. The Sitrans LG260 version accurately measures levels of solids, granulates and powders even with extreme dust. In particularly harsh environments with high temperatures up to 450 degrees Celsius (842 °F) or high pressures up to 400 bar (5800 psig), such as those in the chemical or petrochemical industry, the Sitrans LG270 is the best choice.

Sitrans LG's high frequency microwave pulses are transmitted down a rod or cable, offering reliable measurement with up to two millimeter (0.08 inch) accuracy in applications with corrosive vapors, steam, foam, surface agitation and/or liquids with high viscosity, low level, and varying dielectric or density.

Installation is simple with the device's range of pre-configured options, such as customized enclosure materials, process connections, approvals and communication options. Users will be operational in minutes with four-button programming directly at the instrument or through remote configuration with Siemens Simatic PDM (Process Device Manager) via HART communications protocol.

Further information on Sitrans radar level transmitter can be found at www.siemens.com/sitransLG

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector's comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers' productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

Reference Number: I2014012408e

Contact

Mr. Peter Jefimiec
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Germany
Tel: +49 (911) 895-7975
peter.jefimiec​@siemens.com

Peter Jefimiec | Siemens Industry
Further information:
http://www.siemens.com/sitransLG

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>