Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Application flexibility with guided wave radar

15.01.2014
- New product family of Sitrans LG radar level transmitter measures using guided waves

- Four basic versions and wide-ranging configuration options cover a particularly broad application spectrum in all process industries

-Also suitable for use in hygienic applications and in harsh environments

With its new Sitrans LG series, Siemens is offering a flexible portfolio of guided wave radar transmitters suitable for virtually any type of industrial application.


Sitrans LG radar level transmitter measures

The modular design of the four basic versions Sitrans LG240, Sitrans LG250, Sitrans LG260 and Sitrans LG270, with numerous configuration options, allows for level measurement in the oil and gas, chemical, pharmaceutical as well as food and beverage industries.

The modular radar transmitter covers a broad application spectrum for the measurement of liquids and interfaces, from aggressive materials to hygienic conditions and complies with SIL2 safety standard.

Sitrans LG240 was specifically designed for hygienic applications in the pharmaceutical or food and beverage industries and has the required EHEDG, FDA and 3A certificates. The Sitrans LG250 is ideal for the wide range of liquid level measurement such as those in water treatment applications. The Sitrans LG260 version accurately measures levels of solids, granulates and powders even with extreme dust. In particularly harsh environments with high temperatures up to 450 degrees Celsius (842 °F) or high pressures up to 400 bar (5800 psig), such as those in the chemical or petrochemical industry, the Sitrans LG270 is the best choice.

Sitrans LG's high frequency microwave pulses are transmitted down a rod or cable, offering reliable measurement with up to two millimeter (0.08 inch) accuracy in applications with corrosive vapors, steam, foam, surface agitation and/or liquids with high viscosity, low level, and varying dielectric or density.

Installation is simple with the device's range of pre-configured options, such as customized enclosure materials, process connections, approvals and communication options. Users will be operational in minutes with four-button programming directly at the instrument or through remote configuration with Siemens Simatic PDM (Process Device Manager) via HART communications protocol.

Further information on Sitrans radar level transmitter can be found at www.siemens.com/sitransLG

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector's comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers' productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

Reference Number: I2014012408e

Contact

Mr. Peter Jefimiec
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Germany
Tel: +49 (911) 895-7975
peter.jefimiec​@siemens.com

Peter Jefimiec | Siemens Industry
Further information:
http://www.siemens.com/sitransLG

More articles from Machine Engineering:

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>