Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Application flexibility with guided wave radar

15.01.2014
- New product family of Sitrans LG radar level transmitter measures using guided waves

- Four basic versions and wide-ranging configuration options cover a particularly broad application spectrum in all process industries

-Also suitable for use in hygienic applications and in harsh environments

With its new Sitrans LG series, Siemens is offering a flexible portfolio of guided wave radar transmitters suitable for virtually any type of industrial application.


Sitrans LG radar level transmitter measures

The modular design of the four basic versions Sitrans LG240, Sitrans LG250, Sitrans LG260 and Sitrans LG270, with numerous configuration options, allows for level measurement in the oil and gas, chemical, pharmaceutical as well as food and beverage industries.

The modular radar transmitter covers a broad application spectrum for the measurement of liquids and interfaces, from aggressive materials to hygienic conditions and complies with SIL2 safety standard.

Sitrans LG240 was specifically designed for hygienic applications in the pharmaceutical or food and beverage industries and has the required EHEDG, FDA and 3A certificates. The Sitrans LG250 is ideal for the wide range of liquid level measurement such as those in water treatment applications. The Sitrans LG260 version accurately measures levels of solids, granulates and powders even with extreme dust. In particularly harsh environments with high temperatures up to 450 degrees Celsius (842 °F) or high pressures up to 400 bar (5800 psig), such as those in the chemical or petrochemical industry, the Sitrans LG270 is the best choice.

Sitrans LG's high frequency microwave pulses are transmitted down a rod or cable, offering reliable measurement with up to two millimeter (0.08 inch) accuracy in applications with corrosive vapors, steam, foam, surface agitation and/or liquids with high viscosity, low level, and varying dielectric or density.

Installation is simple with the device's range of pre-configured options, such as customized enclosure materials, process connections, approvals and communication options. Users will be operational in minutes with four-button programming directly at the instrument or through remote configuration with Siemens Simatic PDM (Process Device Manager) via HART communications protocol.

Further information on Sitrans radar level transmitter can be found at www.siemens.com/sitransLG

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector's comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers' productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

Reference Number: I2014012408e

Contact

Mr. Peter Jefimiec
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Germany
Tel: +49 (911) 895-7975
peter.jefimiec​@siemens.com

Peter Jefimiec | Siemens Industry
Further information:
http://www.siemens.com/sitransLG

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>