Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The World’s First Sterilizable Flexible Organic Transistors

02.04.2012
The University of Tokyo (Tokyo, Japan) and the Japan Science and Technology Agency (JST) announced on 6th March 2012 that an international research team led by Professor Takao Someya has succeeded in manufacturing the world’s first flexible organic transistor on a polymeric film.

This organic transistor is robust under high temperature medical sterilization processes. The high thermal stability of the gate layer was confirmed by a cooperative structural analysis using a synchrotron radiation beam at Brookhaven National Laboratory’s (BNL) Synchrotron Light Source (NSLS).

The study is reported in BNL News and published online in Nature Communications on 6th March 2012*. This research is carried out as an ERATO Project of JST.

In a serious aging society with a declining birth rate, electronics are increasing their importance in health and medical areas. On this background, the expectation is getting higher on a flexible organic transistor, which is a soft electronic switch.

Manufacturing of a flexible transistor on a bio- compatible polymeric film is not too difficult. For practical implementation, however, high temperature stability and low operating voltages are challenging problems with the best match of its softness and bio-compatibility.

The international research team has succeeded in manufacturing an organic transistor on a polymeric film that has a high thermal stability up to 150°C or higher and the low driving voltage of 2 V with high mobility of 1.2 cm2V−1s−1 at the same time. The new type organic transistor can be sterilized in a standard sterilization process (150°C heat treatment).

The key technology to realize the heat resistant organic transistor with low driving voltage is the development of a new insulating film comprising an ultra-thin (--2 nm) and densely packed layer named self-assembled monolayer (SAM).

Research team seems to expect such applications as long implantable devices and some medical devices like a smart catheter, and thin film medical sensors.

Administrator Account | Research asia research news
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>