Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first demonstration of power transfer from wheels to power an electric car

05.12.2012
Electric vehicles (EV) have ten times higher energy performance than automobiles powered by gasoline-based engines.

However, they are not yet popular with drivers due to the need to store large batteries onboard. Now, Takashi Ohira and colleagues are developing an innovative method for powering EVs that drastically reduces the number of batteries.

Electric vehicles (EV) have ten times higher energy performance than automobiles powered by gasoline-based engines. EVs show tremendous potential as an effective solution to both energy shortages and global warming.

However, conventional battery-based EVs are not popular with drivers because of drawbacks including: (1) short cruising range; (2) long time to recharge; and (3) high cost. Now, assuming that these drawbacks stem from the need to store large batteries onboard cars, then there are strong demands for alternatives means of powering electric cars. In a novel approach, Takashi Ohira at Toyohashi University of Technology and colleagues are developing an innovative method for powering EVs that drastically reduces the number of batteries.

The approach exploits the steel belt usually embedded in rubber tires. The steel belt collects power excited from a pair of electrodes buried beneath the road surface. And, since the steel belt is electrically insulated by the rubber tread, the researchers used a displacement current at high frequency to penetrate from underground to the steel belt.

The researchers constructed a 1/32 scale EV to proof their concept for the electric car. The car moved successfully with a power penetration efficiency exceeding 75% at 52 MHz. This is the world-first demonstration of electric power transfer via the car-wheel to the vehicle.

“If the scheme is applied into practice, we believe it would enable a tremendous extension of the EV cruising range,” says Ohira.

Journal information

Authors: Y. Suzuki, T. Sugiura, N. Sakai, M.Hanazawa, and T. Ohira.
Title of original paper: Dielectric Coupling from Electrified Roadway to Steel-Belt Tires Characterized for Miniature Model Car Running Demonstration.
Journal, volume, pages and year: IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission, IMWS-IWPT2012, pp.35-38 (2012).
Digital Object Identifier (DOI): 10.1109/IMWS.2012.6215814
Affiliations: Department of Electrical & Electronic information Engineering.

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>