Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first demonstration of power transfer from wheels to power an electric car

05.12.2012
Electric vehicles (EV) have ten times higher energy performance than automobiles powered by gasoline-based engines.

However, they are not yet popular with drivers due to the need to store large batteries onboard. Now, Takashi Ohira and colleagues are developing an innovative method for powering EVs that drastically reduces the number of batteries.

Electric vehicles (EV) have ten times higher energy performance than automobiles powered by gasoline-based engines. EVs show tremendous potential as an effective solution to both energy shortages and global warming.

However, conventional battery-based EVs are not popular with drivers because of drawbacks including: (1) short cruising range; (2) long time to recharge; and (3) high cost. Now, assuming that these drawbacks stem from the need to store large batteries onboard cars, then there are strong demands for alternatives means of powering electric cars. In a novel approach, Takashi Ohira at Toyohashi University of Technology and colleagues are developing an innovative method for powering EVs that drastically reduces the number of batteries.

The approach exploits the steel belt usually embedded in rubber tires. The steel belt collects power excited from a pair of electrodes buried beneath the road surface. And, since the steel belt is electrically insulated by the rubber tread, the researchers used a displacement current at high frequency to penetrate from underground to the steel belt.

The researchers constructed a 1/32 scale EV to proof their concept for the electric car. The car moved successfully with a power penetration efficiency exceeding 75% at 52 MHz. This is the world-first demonstration of electric power transfer via the car-wheel to the vehicle.

“If the scheme is applied into practice, we believe it would enable a tremendous extension of the EV cruising range,” says Ohira.

Journal information

Authors: Y. Suzuki, T. Sugiura, N. Sakai, M.Hanazawa, and T. Ohira.
Title of original paper: Dielectric Coupling from Electrified Roadway to Steel-Belt Tires Characterized for Miniature Model Car Running Demonstration.
Journal, volume, pages and year: IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission, IMWS-IWPT2012, pp.35-38 (2012).
Digital Object Identifier (DOI): 10.1109/IMWS.2012.6215814
Affiliations: Department of Electrical & Electronic information Engineering.

Adarsh Sandhu | Research asia research news
Further information:
http://www.tut.ac.jp/english
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht From allergens to anodes: Pollen derived battery electrodes
08.02.2016 | Purdue University

nachricht Clean Energy From Water
08.02.2016 | Universität Basel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>