Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World crude oil production may peak a decade earlier than some predict

11.03.2010
In a finding that may speed efforts to conserve oil and intensify the search for alternative fuel sources, scientists in Kuwait predict that world conventional crude oil production will peak in 2014 — almost a decade earlier than some other predictions. Their study is in ACS' Energy & Fuels, a bi-monthly journal.

Ibrahim Nashawi and colleagues point out that rapid growth in global oil consumption has sparked a growing interest in predicting "peak oil" — the point where oil production reaches a maximum and then declines. Scientists have developed several models to forecast this point, and some put the date at 2020 or later.

One of the most famous forecast models, called the Hubbert model, accurately predicted that oil production would peak in the United States in 1970. The model has since gained in popularity and has been used to forecast oil production worldwide. However, recent studies show that the model is insufficient to account for more complex oil production cycles of some countries. Those cycles can be heavily influenced by technology changes, politics, and other factors, the scientists say.

The new study describe development of a new version of the Hubbert model that accounts for these individual production trends to provide a more realistic and accurate oil production forecast. Using the new model, the scientists evaluated the oil production trends of 47 major oil-producing countries, which supply most of the world's conventional crude oil. They estimated that worldwide conventional crude oil production will peak in 2014, years earlier than anticipated. The scientists also showed that the world's oil reserves are being depleted at a rate of 2.1 percent a year. The new model could help inform energy-related decisions and public policy debate, they suggest.

ARTICLE FOR IMMEDIATE RELEASE "Forecasting World Crude Oil Production Using Multicyclic Hubbert Model"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ef901240p

CONTACT:
Ibrahim Nashawi, Ph.D.
Department of Petroleum Engineering
College of Engineering and Petroleum
Kuwait University
Safat, Kuwait
Phone: 3 965 2498750
Fax: 3 965 248336058
Email: is.nashawi@ku.edu.kw

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>