Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World crude oil production may peak a decade earlier than some predict

In a finding that may speed efforts to conserve oil and intensify the search for alternative fuel sources, scientists in Kuwait predict that world conventional crude oil production will peak in 2014 — almost a decade earlier than some other predictions. Their study is in ACS' Energy & Fuels, a bi-monthly journal.

Ibrahim Nashawi and colleagues point out that rapid growth in global oil consumption has sparked a growing interest in predicting "peak oil" — the point where oil production reaches a maximum and then declines. Scientists have developed several models to forecast this point, and some put the date at 2020 or later.

One of the most famous forecast models, called the Hubbert model, accurately predicted that oil production would peak in the United States in 1970. The model has since gained in popularity and has been used to forecast oil production worldwide. However, recent studies show that the model is insufficient to account for more complex oil production cycles of some countries. Those cycles can be heavily influenced by technology changes, politics, and other factors, the scientists say.

The new study describe development of a new version of the Hubbert model that accounts for these individual production trends to provide a more realistic and accurate oil production forecast. Using the new model, the scientists evaluated the oil production trends of 47 major oil-producing countries, which supply most of the world's conventional crude oil. They estimated that worldwide conventional crude oil production will peak in 2014, years earlier than anticipated. The scientists also showed that the world's oil reserves are being depleted at a rate of 2.1 percent a year. The new model could help inform energy-related decisions and public policy debate, they suggest.

ARTICLE FOR IMMEDIATE RELEASE "Forecasting World Crude Oil Production Using Multicyclic Hubbert Model"


Ibrahim Nashawi, Ph.D.
Department of Petroleum Engineering
College of Engineering and Petroleum
Kuwait University
Safat, Kuwait
Phone: 3 965 2498750
Fax: 3 965 248336058

Michael Bernstein | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>