Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's fastest camera relies on an entirely new type of imaging

04.05.2009
Ultrafast, light-sensitive video cameras are needed for observing high-speed events such as shockwaves, communication between living cells, neural activity, laser surgery and elements of blood analysis. To catch such elusive moments, a camera must be able to capture millions or billions of images continuously with a very high frame rate. Conventional cameras are simply not up to the task.

Now, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a novel, continuously running camera that captures images roughly a thousand times faster than any existing conventional camera.

In a paper in the April 30 issue of Nature (currently available online), UCLA Engineering researchers Keisuke Goda, Kevin Tsia and team leader Bahram Jalali describe an entirely new approach to imaging that does not require a traditional CCD (charge-coupled device) or CMOS (complementary metal-oxide semiconductor) video camera. Building on more than a decade of research on photonic time stretch, a technique for capturing elusive events, the team has demonstrated a camera that captures images at some 6 million frames per second.

"The most demanding application for high-speed imaging involves fast events that are very rare, rogue events or the proverbial needle in the haystack — in other words, unusual events that carry important information," said Jalali, a professor of electrical engineering and principal investigator of the project.

One of the applications he envisions for the camera is flow cytometry, a technique used for blood analysis. Traditional blood analyzers can count cells and extract information about their size, but they cannot take pictures of every cell because no camera is fast and sensitive enough for the job. At the same time, images of cells are needed to distinguish diseased cells from healthy ones. Today, pictures are taken manually under a microscope from a very small sample of blood.

But what if you needed to detect the presence of very rare cells that, although few in number, signify the early stages of a disease? Circulating tumor cells are a perfect example. Typically, there are only a handful of them among a billion healthy cells; yet these cells are precursors to metastasis, the spread of cancer that causes about 90 percent of cancer mortalities.

"The chance that one of these cells will happen to be on the small sample of blood viewed under a microscope is negligible," Jalali said. "To find these rogue cells — needles in the haystack — you need to analyze billions of cells, the entire haystack. Ultra-high-speed imaging of cells in flow is a potential solution for detection of rare abnormal cells."

The new imager operates by capturing each picture with an ultrashort laser pulse — a flash of light only a billionth of a second long. It then converts each pulse to a serial data stream that resembles the data in a fiber optic network rather than the signal coming out of a camera. Using a technique known as amplified dispersive Fourier transform, these laser pulses, each containing an entire picture, are amplified and simultaneously stretched in time to the point that they are slow enough to be captured with an electronic digitizer.

The fundamental problem in performing high-speed imaging, Jalali says, is that the camera becomes less and less sensitive at higher and higher speeds. It is simple to see why: At high frame rates, there is less time to collect photons in each frame before the signal becomes weaker and more prone to noise. The new imager overcomes this because it is the first to feature optical image amplification.

"Our serial time-encoded amplified microscopy (STEAM) technology enables continuous real-time imaging at a frame rate of more than 6 MHz, a shutter speed of less than 450 ps and an optical image gain of more than 300 — the world's fastest continuously running camera, useful for studying rapid phenomena in physics, chemistry and biology," said research co-author Goda, a postdoctoral researcher in the group.

One such phenomenon the group has studied with the new camera is laser ablation, an important technology that is the basis of laser medicine. The camera can capture laser ablation happening in real time, providing important clues for understanding the process and optimizing its effectiveness.

"Unlike other high-speed imaging methods, our approach does not require cooling of the camera or high-intensity illumination — problems that plague conventional CCD and CMOS cameras," said Kevin Tsia, a graduate student in the group and a co-author of the research.

The study was funded by the Defense Advanced Research Project Agency (DARPA), the U.S. Department of Defense's central research and development organization.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to six multimillion-dollar interdisciplinary research centers in space exploration, wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>