Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's fastest camera, created by UCLA engineers, used to detect rogue cancer cells

06.07.2012
The ability to distinguish and isolate rare cells from among a large population of assorted cells has become increasingly important for the early detection of disease and for monitoring disease treatments.

Circulating cancer tumor cells are a perfect example. Typically, there are only a handful of them among a billion healthy cells, yet they are precursors to metastasis, the spread of cancer that causes about 90 percent of cancer mortalities. Such "rogue" cells are not limited to cancer — they also include stem cells used for regenerative medicine and other cell types.

Unfortunately, detecting such cells is difficult. Achieving good statistical accuracy requires an automated, high-throughput instrument that can examine millions of cells in a reasonably short time. Microscopes equipped with digital cameras are currently the gold standard for analyzing cells, but they are too slow to be useful for this application.

Now, a new optical microscope developed by UCLA engineers could make the tough task a whole lot easier.

"To catch these elusive cells, the camera must be able to capture and digitally process millions of images continuously at a very high frame rate," said Bahram Jalali, who holds the Northrop Grumman Endowed Opto-Electronic Chair in Electrical Engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "Conventional CCD and CMOS cameras are not fast and sensitive enough. It takes time to read the data from the array of pixels, and they become less sensitive to light at high speed."

The current flow-cytometry method has high throughput, but since it relies on single-point light scattering, as opposed to taking a picture, it is not sensitive enough to detect very rare cell types, such as those present in early-stage or pre-metastasis cancer patients.

To overcome these limitations, an interdisciplinary team of researchers led by Jalali and Dino Di Carlo, a UCLA associate professor of bioengineering, with expertise in optics and high-speed electronics, microfluidics, and biotechnology, has developed a high-throughput flow-through optical microscope with the ability to detect rare cells with sensitivity of one part per million in real time.

This technology builds on the photonic time-stretch camera technology created by Jalali's team in 2009 to produce the world's fastest continuous-running camera.

In the latest issue of the journal Proceedings of the National Academy of Sciences, Jalali, Di Carlo and their colleagues describe how they integrated this camera with advanced microfluidics and real-time image processing in order to classify cells in blood samples. The new blood-screening technology boasts a throughput of 100,000 cells per second, approximately 100 times higher than conventional imaging-based blood analyzers.

"This achievement required the integration of several cutting-edge technologies through collaborations between the departments of bioengineering and electrical engineering and the California NanoSystems Institute and adds to the significant technology infrastructure being developed at UCLA for cell-based diagnostics," Di Carlo said.

Both Jalali and Di Carlo are members of the California NanoSystems Institute at UCLA.

Their research demonstrates real-time identification of rare breast cancer cells in blood with a record low false-positive rate of one cell in a million. Preliminary results indicate that this new technology has the potential to quickly enable the detection of rare circulating tumor cells from a large volume of blood, opening the way for statistically accurate early detection of cancer and for monitoring the efficiency of drug and radiation therapy.

"This technology can significantly reduce errors and costs in medical diagnosis," said lead author Keisuke Goda, a UCLA program manager in electrical engineering and bioengineering.

The results were obtained by mixing cancer cells grown in a laboratory with blood in various proportions to emulate real-life patient blood.

"To further validate the clinical utility of the technology, we are currently performing clinical tests in collaboration with clinicians," said Goda, also a member of the California NanoSystems Institute. "The technology is also potentially useful for urine analysis, water quality monitoring and related applications."

The study was funded by the U.S. Congressionally Directed Medical Research Programs (CDMRP) and by NantWorks LLC and the Burroughs Wellcome Fund.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to nine multimillion-dollar interdisciplinary research centers in wireless sensor systems, wireless health, nanoelectronics, nanomedicine, renewable energy, customized computing, the smart grid, and the Internet, all funded by federal and private agencies and individual donors.

For more UCLA news, visit the UCLA Newsroom and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu
http://www.engineer.ucla.edu
http://www.twitter.com/uclaengineering

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>