Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working together to design robust silicon chips

13.11.2009
Designers of high-speed silicon chips have often had to compromise on performance levels for their integrated circuit designs because of physical weaknesses appearing during design verification or even in production.

This has necessitated building redundancy into chip designs to allow for the imperfect environments of production and use that vary from the ideal of the design workbench. Issues such as voltage variations, thermal heat effects, electrostatic discharge, internal radiation and crosstalk can all downgrade the performance and reliability of a perfect design.

With circuit detail resolutions now descending to 65 and 45 nm, such problems are becoming ever more acute. All too often, chip designs pass traditional checks, yet fail when manufactured in silicon, forcing design teams to turn to costly diagnostic and repair methods or – worse still – throw the chip away.

Three major European semiconductor manufacturers – Infineon, NXP Semiconductors and STMicroelectronics – got together in ROBIN to define and deal with such problems early in the design phase, thus avoiding problems further down the development flow or in the production phase. They were joined by a laboratory with strong expertise in quantum physics and four electronic design automation (EDA) companies.

Favouring first silicon success

"Our most important target was to favour 'first silicon success' without affecting the performance of the circuits," explains project leader Philippe Garcin of STMicroelectronics, which started ROBIN. The other partners joined either because they had similar problems as in the case of Infineon and NXP, new solutions they intended to put on the open market in the case of the EDA companies or long-term solutions in mind as far as the research organisation was concerned.

The chipmaking partners formalised the problems, specified software tools, models and design flows with strong interoperability, and proposed complementary test cases. Together with the EDA partners, they built new solutions that are now available for exploitation in line with these specifications.

A key objective was to optimise the design approach to both existing 130 and 90 nm and future 65 and 45 nm technologies by defining the most efficient trade-offs between circuit robustness in terms of yield and reliability, and efficient use of technology affecting performance, density and power consumption. The challenge was to maintain or enhance existing performance levels, while improving design reliability and robustness.

Taking a bottom-up approach

"We took a bottom-up approach, from technology to chip level and then to system-in-package (SIP) level," says Garcin. "We examined a wide range of issues, from power and substrate effects through signal interference to manufacturing cost."

While applications require smaller voltages and higher frequencies, miniaturisation adds new risks of voltage distortions. To reduce design iterations and avoid unreliability or failures, ROBIN aimed to prevent these effects very early in the design flow. The project addressed signal corruption in power distribution and on the substrate, and took into account the effects of interconnect crosstalk and natural radiations.

The MEDEA+ project attained its goal of obtaining the best from available and emerging technologies by defining optimal trade-offs between circuit robustness in terms of yield and reliability, and efficient use of technology – performance, density and power consumption – down to 45 nm. For example, on inter-block couplings, ROBIN allowed a decrease of simulation time by factor of four in very critical radio-frequency circuits.

As support for the microelectronics industry, the ROBIN partners developed the basic concept for a unified chip/package data exchange (CPX) environment. The two industry standards – ESDA and JEDEC – used to measure electrostatic discharges were both evaluated and discussed. In the course of the project, the benefits of ROBIN were demonstrated in automotive, telecommunications and multimedia applications. Co-operation was highly successful within the different work groups.

Co-operation key to European success

As a result of ROBIN, partners' competitiveness was much improved, in particular for high reliability applications such as networking and medical. "Coming together within the MEDEA+ framework made an important difference," explains Garcin. "At the end of the project, among its 50 outcomes, about 80% were available for exploitation: the same results would not have been possible – either in terms of quantity or in terms of quantity – if the partners had worked alone.

"By aligning their requests, the industrial partners were able to prepare concerted specifications for their EDA tool providers. Thanks to the standards-based approach used in ROBIN, it is technically possible to share the results of the project across European industry – and the consortium is already taking the developments further in a new research project."

Niki Naska | EurekAlert!
Further information:
http://www.eureka.be

Further reports about: Infineon NXP STMicroelectronics chip design power consumption software tool

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>