Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless power transfer achieved at 5-meter distance

17.04.2014

With a maximum output power of 209 W at 20 kHz, the Dipole Coil Resonant System can charge 40 smart phones simultaneously, even if the power source is 5 meters away

The way electronic devices receive their power has changed tremendously over the past few decades, from wired to non-wired. Users today enjoy all kinds of wireless electronic gadgets including cell phones, mobile displays, tablet PCs, and even batteries. The Internet has also shifted from wired to wireless. Now, researchers and engineers are trying to remove the last remaining wires altogether by developing wireless power transfer technology.


A prototype of the Dipole Coil Resonant System, developed by a KAIST research team, turns a LED television on at a 5-meter distance.

Credit: KAIST


This is a simulation result of magnetic flux lines of DCRS coil configuration.

Credit: KAIST

Chun T. Rim, a professor of Nuclear & Quantum Engineering at KAIST, and his team showcased, on April 16, 2014 at the KAIST campus, Daejeon, Republic of Korea, a great improvement in the distance that electric power can travel wirelessly. They developed the "Dipole Coil Resonant System (DCRS)" for an extended range of inductive power transfer, up to 5 meters between transmitter and receiver coils.

Since MIT's (Massachusetts Institute of Technology) introduction of the Coupled Magnetic Resonance System (CMRS) in 2007, which used a magnetic field to transfer energy for a distance of 2.1 meters, the development of long-distance wireless power transfer has attracted much attention for further research.

However, in terms of extending the distance of wireless power, CMRS, for example, has revealed technical limitations to commercialization that are yet to be solved: a rather complicated coil structure (composed of four coils for input, transmission, reception, and load); bulky-size resonant coils; high frequency (in a range of 10 MHz) required to resonate the transmitter and receiver coils, which results in low transfer efficiency; and a high Q factor of 2,000 that makes the resonant coils very sensitive to surroundings such as temperature, humidity, and human proximity.

Professor Rim proposed a meaningful solution to these problems through DCRS, an optimally designed coil structure that has two magnetic dipole coils, a primary one to induce a magnetic field and a secondary to receive electric power. Unlike the large and thick loop-shaped air coils built in CMRS, the KAIST research team used compact ferrite core rods with windings at their centers. The high frequency AC current of the primary winding generates a magnetic field, and then the linkage magnetic flux induces the voltage at the secondary winding.

Scalable and slim with a size of 3 m in length, 10 cm in width, and 20 cm in height, DCRS is significantly smaller than CMRS. The system has a low Q factor of 100, showing 20 times stronger against the environment changes, and works well at a low frequency of 100 kHz. The team conducted several experiments and achieved promising results: for instance, under the operation of 20 kHz, the maximum output power was 1,403 W at a 3-meter distance, 471 W at 4-meter, and 209 W at 5-meter. For 100 W of electric power transfer, the overall system power efficiency was 36.9% at 3 meters, 18.7% at 4 meters, and 9.2% at 5 meters.

"With DCRS," Professor Rim said, "a large LED TV as well as three 40 W-fans can be powered from a 5-meter distance."

"Our technology proved the possibility of a new remote power delivery mechanism that has never been tried at such a long distance. Although the long-range wireless power transfer is still in an early stage of commercialization and quite costly to implement, we believe that this is the right direction for electric power to be supplied in the future. Just like we see Wi-Fi zones everywhere today, we will eventually have many Wi-Power zones at such places as restaurants and streets that provide electric power wirelessly to electronic devices. We will use all the devices anywhere without tangled wires attached and anytime without worrying about charging their batteries."

Professor Rim's team completed a research project with the Korea Hydro & Nuclear Power Co., Ltd in March this year to remotely supply electric power to essential instrumentation and control equipment at a nuclear power plant in order to properly respond to an emergency like the one happened at the Fukushima Daiichi nuclear plant. They succeeded to transfer 10 W of electricity to the plant that was located 7 meters away from the power base.

###

The research result was published in the March 2014 issue of IEEE Transactions on Power Electronics.

Youtube link: http://www.youtube.com/watch?v=R6UCwqjdpo0&feature=youtu.be

For further inquiries:

Chun T. Rim
Associate Professor of Nuclear & Quantum Engineering, KAIST
Tel: +82-42-350-3827
Email: ctrim@kaist.ac.kr

Lan Yoon | Eurek Alert!
Further information:
http://www.kaist.ac.kr

Further reports about: Engineering KAIST MHz Nuclear Quantum Wireless Wireless power Transfer delivery temperature

More articles from Power and Electrical Engineering:

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

nachricht Did you know that UV light helps to ensure safe bathing during the summer months?
25.07.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>