Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down to the wire

01.09.2011
Berkeley Lab researchers develop inexpensive technique for making high quality nanowire solar cells

Solar or photovoltaic cells represent one of the best possible technologies for providing an absolutely clean and virtually inexhaustible source of energy to power our civilization.

However, for this dream to be realized, solar cells need to be made from inexpensive elements using low-cost, less energy-intensive processing chemistry, and they need to efficiently and cost-competitively convert sunlight into electricity. A team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has now demonstrated two out of three of these requirements with a promising start on the third.

Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, led the development of a solution-based technique for fabricating core/shell nanowire solar cells using the semiconductors cadmium sulfide for the core and copper sulfide for the shell. These inexpensive and easy-to-make nanowire solar cells boasted open-circuit voltage and fill factor values superior to conventional planar solar cells. Together, the open-circuit voltage and fill factor determine the maximum energy that a solar cell can produce. In addition, the new nanowires also demonstrated an energy conversion efficiency of 5.4-percent, which is comparable to planar solar cells.

"This is the first time a solution based cation-exchange chemistry technique has been used for the production of high quality single-crystalline cadmium sulfide/copper sulfide core/shell nanowires," Yang says. "Our achievement, together with the increased light absorption we have previously demonstrated in nanowire arrays through light trapping, indicates that core/shell nanowires are truly promising for future solar cell technology."

Yang, who holds a joint appointment with the University of California (UC) Berkeley, is the corresponding author of a paper reporting this research that appears in the journal Nature Nanotechnology. The paper is titled "Solution-processed core–shell nanowires for efficient photovoltaic cells." Co-authoring this paper with Yang were Jinyao Tang, Ziyang Huo, Sarah Brittman and Hanwei Gao.

Typical solar cells today are made from ultra-pure single crystal silicon wafers that require about 100 micrometers in thickness of this very expensive material to absorb enough solar light. Furthermore, the high-level of crystal purification required makes the fabrication of even the simplest silicon-based planar solar cell a complex, energy-intensive and costly process.

A highly promising alternative would be semiconductor nanowires – one-dimensional strips of materials whose width measures only one-thousandth that of a human hair but whose length may stretch up to the millimeter scale. Solar cells made from nanowires offer a number of advantages over conventional planar solar cells, including better charge separation and collection capabilities, plus they can be made from Earth abundant materials rather than highly processed silicon. To date, however, the lower efficiencies of nanowire-based solar cells have outweighed their benefits.

"Nanowire solar cells in the past have demonstrated fill factors and open-circuit voltages far inferior to those of their planar counterparts," Yang says. "Possible reasons for this poor performance include surface recombination and poor control over the quality of the p–n junctions when high-temperature doping processes are used."

At the heart of all solar cells are two separate layers of material, one with an abundance of electrons that function as a negative pole, and one with an abundance of electron holes (positively-charged energy spaces) that function as a positive pole. When photons from the sun are absorbed, their energy is used to create electron-hole pairs, which are then separated at the p-n junction – the interface between the two layers - and collected as electricity.

About a year ago, working with silicon, Yang and members of his research group developed a relatively inexpensive way to replace the planar p-n junctions of conventional solar cells with a radial p-n junction, in which a layer of n-type silicon formed a shell around a p-type silicon nanowire core. This geometry effectively turned each individual nanowire into a photovoltaic cell and greatly improved the light-trapping capabilities of silicon-based photovoltaic thin films.

Now they have applied this strategy to the fabrication of core/shell nanowires using cadmium sulfide and copper sulfide, but this time using solution chemistry. These core/shell nanowires were prepared using a solution-based cation (negative ion) exchange reaction that was originally developed by chemist Paul Alivisatos and his research group to make quantum dots and nanorods. Alivisatos is now the director of Berkeley Lab, and UC Berkeley's Larry and Diane Bock Professor of Nanotechnology.

"The initial cadmium sulfide nanowires were synthesized by physical vapor transport using a vapor–liquid–solid (VLS) mechanism rather than wet chemistry, which gave us better quality material and greater physical length, but certainly they can also be made using solution process" Yang says. "The as-grown single-crystalline cadmium sulfide nanowires have diameters of between 100 and 400 nanometers and lengths up to 50 millimeters."

The cadmium sulfide nanowires were then dipped into a solution of copper chloride at a temperature of 50 degrees Celsius and kept there for 5 to 10 seconds. The cation exchange reaction converted the surface layer of the cadmium sulfide into a copper sulfide shell.

"The solution-based cation exchange reaction provides us with an easy, low-cost method to prepare high-quality hetero-epitaxial nanomaterials," Yang says. "Furthermore, it circumvents the difficulties of high-temperature doping and deposition for typical vapor phase production methods, which suggests much lower fabrication costs and better reproducibility. All we really need are beakers and flasks for this solution-based process. There's none of the high fabrication costs associated with gas-phase epitaxial chemical vapor deposition and molecular beam epitaxy, the techniques most used today to fabricate semiconductor nanowires."

Yang and his colleagues believe they can improve the energy conversion efficiency of their solar cell nanowires by increasing the amount of copper sulfide shell material. For their technology to be commercially viable, they need to reach an energy conversion efficiency of at least ten-percent.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Filter may be a match for fracking water
26.09.2017 | Swansea University

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>