Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WindForS Research Cluster Establishes Office and Launches Further Research Project

04.02.2014
Wind Energy for Complex Terrain

Use of wind energy at challenging sites such as the mountainous regions of southern Germany is at the heart of WindForS, the wind energy research cluster in southern Germany.

For a period of three years, the Baden-Württemberg Ministry for Science, Research and the Arts is providing the funds for a WindFors office at the University of Stuttgart. The initial funding is meant to help professionalise the cluster’s activities and enable its members to start work on the proposed goals. The WindForS office will be the first point of contact for the proposed test field in southern Germany and will press ahead with its realisation.

In order to reach the goals set for the installation of wind power capacity onshore, it will be crucially important that turbines can be operated on difficult terrain such as woods, montainous terrain and on ridges. On account of their meteorological particularities and their complex loading situation these turbines pose a significant challenge to wind turbine manufacturers.

Against this background, WindForS aims to continually improve the economic viability of wind energy use in complex-mountainous terrain and at the same time to take into account ecological and landscape aspects. To this end, the WindForS partners intend to develop technical and non-technical solutions for wind energy use on sites that are topologically difficult such as the mountainous regions of southern Germany.

The research cluster includes as partners the University of Stuttgart, Karlsruhe Institute of Technology, the University of Tübingen, TU München, the Centre for Solar Energy and Hydrogen Research Baden-Württemberg as well as the Universities of Applied Sciences of Aalen and Esslingen. The WindForS office will be mainly concerned with initiating further research projects on a national and international level. It is headed by Andreas Rettenmeier who has been employed with the wind energy unit at the University of Stuttgart’s Institute of Aircraft Design since 2004 and played a vital part in initiating WindForS.

KonTest Project – Test Field Design
Only recently “KonTest“, the second WindForS research project funded by the Federal Ministry for the Environment, has been launched. The main purpose of the two-year collaborative project is to design a wind test field in southern Germany and to find a test field location in Baden-Württemberg or Bavaria. The project results will subsequently be used in setting up a wind test site in complex mountainous terrain. In addition to meteorological masts, one or two research wind turbines of the 600-900 KW class with rotor diameters of about 40 - 80 m will be installed. These will be used to prepare, test and validate new technologies in terms of materials, design methods, aerodynamics, load monitoring, noise reduction, manufacturing engineering, operation management, measurement tools and techniques as well as monitoring. Further research will focus on energy storage and grid integration. Taking into account the experiences gained in, among others, the “alpha ventus” offshore project, issues of landscape aesthetics and ecology are seen as of vital importance and will therefore play an important part in designing the test field as well as in its operation.
For further information please contact:
Andreas Rettenmeier, Universität Stuttgart, Stiftungslehrstuhl Windenergie, Tel. +49 711 685-68325

email: rettenmeier (at) windfors.de, www.windfors.de

For the KonTest project: Jan Anger, Tel. +49 711 685-68289,
email: Anger (at) ifb.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation,
Tel. 0711/685-82176, email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.windfors.de
http://www.uni-stuttgart.de

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>