Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind turbines that learn like humans

28.03.2012
Depending on the weather, wind turbines can face whispering breezes or gale-force gusts. Such variable conditions make extracting the maximum power from the turbines a tricky control problem, but a collaboration of Chinese researchers may have found a novel solution in human-inspired learning models.

Most turbines are designed to produce maximum allowable power once winds reach a certain speed, called the rated speed. In winds above or below the rated speed, control systems can make changes to the turbine system, such as modifying the angle of the blades or the electromagnetic torque of the generator. These changes help keep the power efficiency high in low winds and protect the turbine from damage in high winds.

Many control systems rely on complex and computationally expensive models of the turbine's behavior, but the Chinese group decided to experiment with a different approach. The researchers developed a biologically inspired control system, described in the American Institute of Physics' Journal of Renewable and Sustainable Energy, that used memory of past control experiences and their outcomes to generate new actions. In simulations, the controller showed initially poor results, but quickly learned how to improve, matching the performance of a more traditional control system overall.

The memory-based system is attractive because of its simplicity, the researchers write, concluding that "the human-memory-based method holds great promise for enhancing the efficiency of wind power conversion."

Article: "A Bio-inspired Approach to Enhancing Wind Power Conversion" is published in the Journal of Renewable and Sustainable Energy.

Authors: YongDuan Song (1, 2), WenChuan Cai (2), Peng Li, (2), and YongSheng Hu (3).

(1) School of Automation, Chongqing University, China
(2) School of Electronic and Information Engineering, Beijing Jiaotong University, China

(3) China Datang Corp. Renewable Power Co. Ltd., Beijing, China

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>