Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wind energy enhancement: UC research establishes real-world wind turbine performance metrics

University of Cincinnati research in the Journal of Renewable Energy introduces just-in-time maintenance software based on real-world wind turbine performance. This new predictive software promises better turbine performance at lower costs.

The production of wind-derived renewable energy is growing, and so, it’s important to help wind farm owners operate at higher efficiencies with lower costs.

In fact, figures from the World Wind Energy Association report that installed global capacity for wind-energy production was approximately 240,000 megawatts of power in 2011, up nearly ten fold since 2001.

That growth, which is expected to continue, will increase demand to facilitate plant efficiency and lowered operational costs along with just-in-time turbine maintenance among wind farms. And to that end, University of Cincinnati researchers have been conducting real-world tests of new predictive software that does just that – increases efficiency and lowers costs when it comes to commercial wind-turbine operations.

The test results, which analyze two years’ worth of operating and environmental data from a commercial wind turbine, have just been published in the Journal of Renewable Energy, along with information on the predictive maintenance software.

The paper, “Wind Turbine Performance Assessment using Multi-regime Modeling Approach,” is authored by Edzel Lapira, doctoral student in the Center for Intelligence Maintenance Systems at UC. Co-authors are Dustin Brisset, engineering master’s student; Hossein Davari and David Siegel, engineering doctoral students; and Ohio Eminent Scholar Ohio in Advanced Manufacturing Jay Lee, professor of engineering.

In addition, the UC researchers continue to track and analyze the operation and environmental factors of three more commercial megawatt-class wind turbines, data from which will be used to validate these initial findings.

Historical data on megawatt-class wind turbines that have operated in real-world conditions is rare simply because the industry is so new and the technology is changing so quickly.

The UC team is among the first to begin analyzing data from turbines currently operating in wind farms, as opposed to being limited to data that was collected in a controlled lab or workshop environment or to data from smaller wind turbines. UC’s data collection has been underway for two years and is ongoing. The current data collection is taking place on a wind farm near Shanghai, China.

Often, the real-world data based on sufficient amounts of operating history that is available to researchers is data from smaller wind turbines that have not implemented many of the rapidly changing technologies that are used in today’s more common megawatt-size turbines.

The aim of this initial research by UC was to provide a quantitative measure of commercial turbine power-generation performance so that wind farm operators can objectively and optimally schedule maintenance before more catastrophic, and costly, degradation or failures may occur.

In addition, their research aims to identify the most critical turbine components. In other words, which components have the highest failure rates, along with the average down time of a particular component. The UC analysis software monitors the change of performance of the unit. The change in performance is caused by components requiring maintenance, which contributes to a gap between actual sustained power production and what is expected for the current environmental conditions.

According to Lapira, “It’s impossible to monitor all the parts of a turbine, which is why we worked to determine which are the key components, the most likely to fail and the most expensive failure situations. It’s about establishing the performance metrics for turbines because, until now, there has been a lack of real-world performance metrics.”

For example, according to Lapira, manufacturers of gear boxes for wind turbines predict a 20-year lifespan for their products; however, since no wind farms have been in operation for 20 years, it’s impossible to know the accuracy of that prediction, especially since turbines in the field operate under a wide variety of environmental conditions.

“On some farms, up to 20 percent of the turbines are failing for various reasons, and we need a technique to be able to predict these failures and minimize downtime,” stated Lapira, adding that generators and rotor blades are also good candidates for a predictive maintenance system or even redesign.

The goals of the predictive software the UC team has developed are simple:
To predict maintenance needs so a wind turbine experiences near-zero downtime for repairs.

To aid just-in-time maintenance functions and delivery of needed parts.

To decrease spare-parts inventory

To ultimately predict and foster needed redesigns for wind turbines and their parts.

M.B. Reilly | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>