Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind energy enhancement: UC research establishes real-world wind turbine performance metrics

27.03.2012
University of Cincinnati research in the Journal of Renewable Energy introduces just-in-time maintenance software based on real-world wind turbine performance. This new predictive software promises better turbine performance at lower costs.

The production of wind-derived renewable energy is growing, and so, it’s important to help wind farm owners operate at higher efficiencies with lower costs.

In fact, figures from the World Wind Energy Association report that installed global capacity for wind-energy production was approximately 240,000 megawatts of power in 2011, up nearly ten fold since 2001.

That growth, which is expected to continue, will increase demand to facilitate plant efficiency and lowered operational costs along with just-in-time turbine maintenance among wind farms. And to that end, University of Cincinnati researchers have been conducting real-world tests of new predictive software that does just that – increases efficiency and lowers costs when it comes to commercial wind-turbine operations.

The test results, which analyze two years’ worth of operating and environmental data from a commercial wind turbine, have just been published in the Journal of Renewable Energy, along with information on the predictive maintenance software.

The paper, “Wind Turbine Performance Assessment using Multi-regime Modeling Approach,” is authored by Edzel Lapira, doctoral student in the Center for Intelligence Maintenance Systems at UC. Co-authors are Dustin Brisset, engineering master’s student; Hossein Davari and David Siegel, engineering doctoral students; and Ohio Eminent Scholar Ohio in Advanced Manufacturing Jay Lee, professor of engineering.

In addition, the UC researchers continue to track and analyze the operation and environmental factors of three more commercial megawatt-class wind turbines, data from which will be used to validate these initial findings.

GATHERING BENCHMARK DATA, CREATING A SYSTEMATIC PREDICTIVE SYSTEM
Historical data on megawatt-class wind turbines that have operated in real-world conditions is rare simply because the industry is so new and the technology is changing so quickly.

The UC team is among the first to begin analyzing data from turbines currently operating in wind farms, as opposed to being limited to data that was collected in a controlled lab or workshop environment or to data from smaller wind turbines. UC’s data collection has been underway for two years and is ongoing. The current data collection is taking place on a wind farm near Shanghai, China.

Often, the real-world data based on sufficient amounts of operating history that is available to researchers is data from smaller wind turbines that have not implemented many of the rapidly changing technologies that are used in today’s more common megawatt-size turbines.

The aim of this initial research by UC was to provide a quantitative measure of commercial turbine power-generation performance so that wind farm operators can objectively and optimally schedule maintenance before more catastrophic, and costly, degradation or failures may occur.

In addition, their research aims to identify the most critical turbine components. In other words, which components have the highest failure rates, along with the average down time of a particular component. The UC analysis software monitors the change of performance of the unit. The change in performance is caused by components requiring maintenance, which contributes to a gap between actual sustained power production and what is expected for the current environmental conditions.

According to Lapira, “It’s impossible to monitor all the parts of a turbine, which is why we worked to determine which are the key components, the most likely to fail and the most expensive failure situations. It’s about establishing the performance metrics for turbines because, until now, there has been a lack of real-world performance metrics.”

For example, according to Lapira, manufacturers of gear boxes for wind turbines predict a 20-year lifespan for their products; however, since no wind farms have been in operation for 20 years, it’s impossible to know the accuracy of that prediction, especially since turbines in the field operate under a wide variety of environmental conditions.

“On some farms, up to 20 percent of the turbines are failing for various reasons, and we need a technique to be able to predict these failures and minimize downtime,” stated Lapira, adding that generators and rotor blades are also good candidates for a predictive maintenance system or even redesign.

The goals of the predictive software the UC team has developed are simple:
To predict maintenance needs so a wind turbine experiences near-zero downtime for repairs.

To aid just-in-time maintenance functions and delivery of needed parts.

To decrease spare-parts inventory

To ultimately predict and foster needed redesigns for wind turbines and their parts.

M.B. Reilly | EurekAlert!
Further information:
http://www.uc.edu

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>