Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Weathering-resistant and long-term stable solar film for building-integrated photovoltaics

The Fraunhofer Institutes FEP, ISC and IVV launched the BMBF (Federal Ministry of Education and Research)-funded project »flex25« to develop a solar encapsulation film for light-weight, flexible solar cells on 1 May 2013.

Such solar cells would allow those parts of a building that have been unused up to now to be exploited for the generation of electrical energy – including industrial flat roofs, facades or large window areas.

Encapsulation films for flexible solar cells will be adapted to environmental conditions such as UV-radiation in the »flex25« project.

Buildings have so far been used only by a small percentage to produce energy. But facades, window panes, sunshades or flat roofs offer huge open spaces in which photovoltaic modules could be integrated.

It is expected that up to 50 percent of the energy demand could be satisfied with building-integrated photovoltaics (BIPV) in the long term. Thin-film photovoltaics open up whole new ways of integrating photovoltaic elements in the building envelope on account of their flexibility, low weight and the possibility of adjusting different levels of transparency and colors.

But flexible solar cells to date often lack weathering-resistance and a satisfactory service lifetime. The active layers within a thin-film solar module in particular are very sensitive to water-vapor and oxygen and have to be given the best possible protection against ambient conditions.

The Fraunhofer Institutes for Electron Beam and Plasma Technology FEP, for Silicate Research ISC and for Process Engineering and Packaging IVV, have already developed layer systems and production processes in multi-annual research projects which allow flexible electronic products such as organic light-emitting diodes (OLEDs) or displays to be very effectively protected against water-vapor and oxygen. The technology developed by the scientists currently achieves one of the lowest water-vapor permeability values for roll-to-roll produced systems in the world.

In order to make the proven layer system suitable for outdoor applications, such as its use in flexible solar modules, the scientists are aiming to improve the UV- and weathering-resistance of the encapsulating film within the frame of the »flex25« project (reference number: 03V0224, duration: 3 years) which is being supported within the scope of the BMBF-grant »Validation of the innovative potential of scientific research – VIP«. The technology will be transferred to a weathering- and UV- resistant substrate and the resistance of the layer materials themselves to environmental impacts such as UV-radiation will be improved. The group will hereby exploit its experience in the field of photovoltaics and front side encapsulation. The ultimate aim of this project is the roll-to-roll production of a lightweight, long-term stable front encapsulation of flexible thin-film solar cells with a service lifetime of 25 years.

Currently an encapsulation film that is suitable for outdoor applications is not available anywhere in the world. However, such a film would be a key enabling technology for building-integrated photovoltaics. If the front glass of a typical solar module could be replaced by a polymer film, for example, its weight might be reduced by up to 40 percent and roofs or building parts with limited bearing load of the construction such as industrial flat roofs could be used for photovoltaics.

Press contact:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 |

Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>