Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weathering-resistant and long-term stable solar film for building-integrated photovoltaics

03.09.2013
The Fraunhofer Institutes FEP, ISC and IVV launched the BMBF (Federal Ministry of Education and Research)-funded project »flex25« to develop a solar encapsulation film for light-weight, flexible solar cells on 1 May 2013.

Such solar cells would allow those parts of a building that have been unused up to now to be exploited for the generation of electrical energy – including industrial flat roofs, facades or large window areas.


Encapsulation films for flexible solar cells will be adapted to environmental conditions such as UV-radiation in the »flex25« project.

Buildings have so far been used only by a small percentage to produce energy. But facades, window panes, sunshades or flat roofs offer huge open spaces in which photovoltaic modules could be integrated.

It is expected that up to 50 percent of the energy demand could be satisfied with building-integrated photovoltaics (BIPV) in the long term. Thin-film photovoltaics open up whole new ways of integrating photovoltaic elements in the building envelope on account of their flexibility, low weight and the possibility of adjusting different levels of transparency and colors.

But flexible solar cells to date often lack weathering-resistance and a satisfactory service lifetime. The active layers within a thin-film solar module in particular are very sensitive to water-vapor and oxygen and have to be given the best possible protection against ambient conditions.

The Fraunhofer Institutes for Electron Beam and Plasma Technology FEP, for Silicate Research ISC and for Process Engineering and Packaging IVV, have already developed layer systems and production processes in multi-annual research projects which allow flexible electronic products such as organic light-emitting diodes (OLEDs) or displays to be very effectively protected against water-vapor and oxygen. The technology developed by the scientists currently achieves one of the lowest water-vapor permeability values for roll-to-roll produced systems in the world.

In order to make the proven layer system suitable for outdoor applications, such as its use in flexible solar modules, the scientists are aiming to improve the UV- and weathering-resistance of the encapsulating film within the frame of the »flex25« project (reference number: 03V0224, duration: 3 years) which is being supported within the scope of the BMBF-grant »Validation of the innovative potential of scientific research – VIP«. The technology will be transferred to a weathering- and UV- resistant substrate and the resistance of the layer materials themselves to environmental impacts such as UV-radiation will be improved. The group will hereby exploit its experience in the field of photovoltaics and front side encapsulation. The ultimate aim of this project is the roll-to-roll production of a lightweight, long-term stable front encapsulation of flexible thin-film solar cells with a service lifetime of 25 years.

Currently an encapsulation film that is suitable for outdoor applications is not available anywhere in the world. However, such a film would be a key enabling technology for building-integrated photovoltaics. If the front glass of a typical solar module could be replaced by a polymer film, for example, its weight might be reduced by up to 40 percent and roofs or building parts with limited bearing load of the construction such as industrial flat roofs could be used for photovoltaics.

Press contact:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Gemany | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>